
Ryan McCorvie
UCLA Math 275A

Exercises

Foundations

0.11 Let A be a collection of subset of Ω, and let P(E) be a property of subsets E ⊂ Ω.
(P(E) is true or false for every E ⊂ Ω).

• P(∅) is true

• P(E) is true for all E ⊂ A

• if E ⊂ Ω is such that P(E) is true, then P(Ω \ E) is true

• If E1, E2, · · · ⊂ Ω are such that P(En) is true for all n then P(
⋃

n En) is true

Show that P(E) is true for every E ∈ 〈A〉

The collection P = {E ⊂ Ω : P(E) is true} is a σ-algebra. The items above show that
∅ ∈ P , that P is closed under complements, and that P is closed under countable unions.
Furthermore, Ω ∈ P since Ω = Ω \ ∅. Also for E1, E2, · · · ∈ P ,

⋂
n En ∈ P since

⋂
n En =

(
⋃

n Ec
n)

c.
Now the second item shows that A ⊂ P . Therefore 〈A〉 ⊂ P since 〈A〉 is contained in

every σ-algebra which contans A �

0.15 Show that Rn with the Borel σ-algebra is the product of n copies R with the Borel
σ-algebra

For any measurable set M ⊂ R, the cylinder set {x ∈ Rn : xj ∈ M} is measurable in
Rn. This is because the projection mapping πi : Rn → R which maps πi(x) = xi is
continuous, and the inverse of the projection mapping is a cylinder. Since the cylinder
sets generate the product σ-algebra, so the product σ-algebra is courser than the Borel
σ-algebra on Rn.

Conversely, since (ai, bi) is open in R the cylinder Ci = {x ∈ Rn : xi ∈ (ai, bi)} is in the
product σ-algebra. Therefore the open box

(a1, b1)× · · · × (an, bn) =
n⋂

i=1

Ci (1)

is also in the product σ-algebra. However every open set U ∈ Rn can be written as the
countable union of boxes with rational corner points– just take all such boxes contained
in U. Therefore the product σ-algebra includes all of the open sets of Rn, and these sets
generate the Borel σ-algebra on Rn. Therefore the Borel σ-algebra of Rn is courser than
the product σ-algebra. We conclude the σ-algebras are the same. �
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0.17 Show that any continuous map from one topological space X to another Y is nec-
essarily measurable (when one gives X and Y the Borel σ-algebra)

Let f : X → Y be a continous map. LetM = {M ⊂ R : f−1(M) is measurable}. First,
∅ ∈ M since f−1(∅) = ∅. Furthermore since

X \ f−1(M) = f−1(Y \M) (2)

we conclude Y \M ∈ M if Y ∈ M is, since the hypothesis implies f−1(M) is measurable,
and hence X \ f−1(Y) is also. In short,M is closed under complements. Furthermore⋃

n
f−1(Mn) = f−1(

⋃
n

Mn) (3)

so
⋃

n Mn ∈ M, since its its inverse is a measurable set. Finally, since f is continuous,
for any open set U ⊂ Y, we know f−1(U) is open and hence measurable. ThereforeM
contains all open sets. By 0.11 it therefore contains the σ-algebra generated by open sets,
namely the Borel σ-algebra. Thus f−1(M) is measurable in X for every M measurable in
Y, and the function f is measurable. �

0.18 If X1 : Ω → R1, . . . , Xn : Ω → Rn are measurable functions into measurable
spaces R1, . . . , Rn show that the joint function (X1, . . . , Xn) : Ω → R1 × · · · × Rn given
by ω 7→ (X1(ω), . . . , Xn(ω)) is also measurable

In 0.17 we showed thatM = {M : f−1(M) is measurable} is a σ-algebra for any function
f . Thus to show the mapping above is measurable, it suffices to show the inverse of
cylinder sets are measurable. However, the inverse of the cylinder set Ci = {x ∈ R1 ×
· · · × Rn : xi ∈ Ei} under the product map is the same as the inverse of Ei under Xi. This
set is measurable by hypothesis because Xi is a measurable function. �

0.23 Prove the measure has a bunch of properties

1. (Monotonicity) Suppose E ⊂ F. Then by countable additivity and positivity

µ(F) = µ(E) + µ(F \ E) ≥ µ(E) (4)

Summarizing, µ(E) ≤ µ(F)

2. (Subadditivity) Suppose E1, E2, . . . are measurable (not necessarily disjoint) sets. Let
Fn =

⋃n
m=1 Em be the union of events up to n. Then the events E′n = En \ Fn−1 are

disjoint with
⋃

n E′n =
⋃

n En. Furthermore, by monotonicity (property a) µ(E′n) ≤
µ(En). Therefore

µ(
⋃
n

En) = µ(
⋃
n

E′n) = ∑
n

µ(E′n) ≤∑
n

µ(En) (5)

Summarizing, for any events En, µ(
⋃

n En) ≤ ∑n µ(En).
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3. (Continuity from below) Let E1 ⊂ E2 ⊂ . . . be measurable. Using the construction
from (2), the disjoint sets E′n = En \ En−1 have the property that En =

⋃n
m=1 Em =⋃n

m=1 E′m and
⋃∞

n=1 En =
⋃∞

n=1 E′n. Thus

lim
n

µ(En) = lim
n

n

∑
m=1

µ(E′m) =
∞

∑
m=1

µ(E′m) = µ(
⋃
m

E′m) = µ(
⋃
m

Em) (6)

Summarizing, limn→∞ µ(En) = µ(
⋃

n En)

4. (Continuity from above) Suppose E1 ⊃ E2 ⊃ . . . are measurable. Let Fn = E1 \ En and
note F1 ⊂ F2 ⊂ . . . satisfy the hypothesis of (3). Now

⋃
n Fn = E1 \

⋂
n En, so

µ(E1 \
⋂
n

En) = µ(
⋃
n

Fn) = lim
n

µ(Fn) = lim
n

µ(E1 \ En) (7)

Now µ(E1) = µ(E1 \ En) + µ(En), so if µ(E1) is finite then so are µ(En) and µ(E1 \ En),
and the so the equation µ(E1 \ En) = µ(E1)−µ(En). Similarly µ(E1 \

⋂
n En) = µ(E1)−

µ(
⋂

n En). Therefore we can rewrite (7)

µ(E1)− µ(
⋂
n

En) = µ(E1)− lim
n

µ(En) (8)

Canceling µ(E1) gives the equation limn µ(En) = µ(
⋂

n En).

if µ(E1) = ∞, its possible for this property to fail. Consider En = [n, ∞). Then
E1 ⊃ E2 ⊃ . . . . In this case µ(

⋂
n En) = µ(∅) = 0 however µ(En) = ∞ for all n,

so limn→∞ µ(En) = ∞
�

0.24 Let (Ω,B) be a measurable space.

• If f : Ω→ [−∞, ∞] is a function taking values in the extended reals [−∞, ∞] show
that f is measurable (with respect to the Borel σ-algebra) if and only if the sets
{ω ∈ Ω : f (ω) ≤ t} are measurable for all real t

• If f , g : Ω → [−∞, ∞] are functions, show that f = g if and only if {ω ∈ Ω :
f (ω) ≤ t} = {ω ∈ Ω : g(ω) ≤ t} for all real t

• If f1, f2, · · · : Ω → [−∞, ∞] are measurable show that supn fn,
infn fn, lim supn fn, lim inf fn are all measurable.

• In 0.17 we showed that M = {M : f−1(M) is measurable} is a σ-algebra. Thus,
if we can show that all open sets are inM then we can conclude that f is measur-
able with respect to Borel measurable sets. By hypothesis the sets [−∞, t] ∈ M.
Therefore so are [−∞, s) =

⋃
n[−∞, s − 1/n] and (s, ∞] = [−∞, s]c. Also, so is

(s, t) = [−∞, s) \ [−∞, t]. But the sets (q1, q2) with q1, q2 ∈ Q along with [−∞, q)
and (q, ∞] form a countable basis for [−∞, ∞]. Every open set U ⊂ [−∞, ∞] is the
union of all such subsets which are contained in U, and there are only countably
many such subsets. Therefore all open sets U ⊂ [−∞, ∞] are inM.
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• If f = g then trivially the sets are equal. Conversely, swapping f and g if necessary,
f (ω) > g(ω) = t for some ω ∈ Ω. Then ω 6∈ f−1([−∞, t]) but ω ∈ g−1([−∞, t])
and the sets are not equal.

• Suppse t ≥ supn fn(ω). Then also t ≥ fn(ω) since supn fn ≥ fm for any m. Further-
more if supn fn(ω) > t then some fm(ω) > t since otherwise t is an upperbound for
all fn(ω) and hence supn fn(ω) ≤ t. This shows that

{ω ∈ Ω : sup
n

fn(ω) ≤ t} =
⋂
n
{ω ∈ Ω : fn(ω) ≤ t} (9)

Therefore {ω ∈ Ω : supn fn(ω) ≤ t} is measurable, since its the countable union of
measurable sets. By the first item, this shows supn f is measurable. Turning to the
infimum

{ω ∈ Ω : inf
n

fn(ω) ≥ t} =
⋂
n
{ω ∈ Ω : fn(ω) ≥ t} (10)

Thus the sets on the left hand side are measurable. Since the arguments in item
1 are symmetric with respect to the transformation x → −x, this is sufficient to
show f = inf fn is measurable. Since lim inf fn = supm infn≥m fn and lim sup fn =
infm supn≥m fn, these functions are also measurable.

�

0.26 Let µ be a probability measure on the real line R (with the Borel σ-algebra). Define
Stieltjes measure function F : R→ [0, 1] associated to µ by the formula

F(t) := µ((−∞, t]) = µ({x ∈ R : x ≤ t}) (11)

Establish some properties

(i) F is non-decreasing, so that F(s) ≤ F(t) for s < t. This follows from the monotonic-
ity property in 0.23 since (−∞, s] ⊂ (−∞, t]

(ii) Using continuity from below in 0.23, limn→∞ F(t) = limn→∞ µ((0, n]) = µ((−∞, ∞)) =
1 for n ∈ Z. The fact that F is non-decreasing lets us extend the limit to reals so that
limt→∞ F(t) = 1 for t ∈ R, since F(t) ≥ F(btc). Thus 1− F(t) < ε for arbitrarily
small ε for large t > N ∈ Z such that 1− F(N) < ε, and N exists because the limit
exists in Z. Since this is a probability space, µ(E) ≤ 1 < ∞ for all measurable events.
Therefore we can use the analogous argument with continuity from above to show
that limt→−∞ F(t) = µ(∅) = 0

(iii) Let sk ↓ s be any decreasing sequence which converges down to s. Then by continu-
ity from above in 0.23 limk→∞ F(sk) = µ(

⋂
k(−∞, sk]) = µ((−∞, s]) = F(s). We can

extend this to limits in R using the monotonicity of F, so limt→s+ F(t) = F(s).
�
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0.28 Let X be a real random variable with cumulative distribution function F. For any
real number t show that

Pr(X < t) = lim
s→t−

F(s) (12)

and
Pr(X = t) = F(t)− lim

s→t−
F(s) (13)

In particular, Pr(X = t) = 0 for all t if and only if F is continuous.

This is the same argument as in 0.26iii. Let tk ↑ t be a monotonic increasing sequence
converging to t. Then using continuity from below

lim
k

F(tk) = lim
k

Pr((−∞, tk]) = Pr((−∞, t)) = Pr(X < t) (14)

since
⋃

k(−∞, tk] = (−∞, t). From the monotonicity of the cumulative density function,
this limit extends to the real numbers so lims→t− F(s) = Pr(X < t).

Furthermore

Pr(X = t) = Pr({X ≤ t} \ {X < t}) = Pr(X ≤ t)− Pr(X < t) = F(t)− lim
s→t−

F(s) (15)

In 0.23 we showed that F is right continuous. From this equation, F is left continuous if
and only if Pr(X = t) = 0 for all t. �

0.29 (Skorokhod representation of a scalar variable) Let U have a uniform distribu-
tion. Thus the cumulative distribution function is given by

FU(t) =


0 t ≤ 0
t 0 < t ≤ 1
1 t > 1

(16)

Let F : R→ [0, 1] be another cumulative distribution function. Show that

X− := sup{y ∈ R : F(y) < U} X+ := inf{y ∈ R : F(y) ≥ U} (17)

are random variables (i.e., they are measurable in any model Ω) and have cumulative
distribution function F.

Basically X = F−1(U), except F need not be one-to-one. But its monotonic and right
continuous, so its almost one-to-one. We just have to be careful with intervals where F is
constant or points where F increases discontinuously.

This construction is attributed to Skorokhod, but it should not be confused with the
Skorokhod representation theorem. It provides a quick way to generate a single scalar
variable, but unfortunately it is difficult to modify this construction to generate multiple
scalar variables, especially if they are somehow coupled to each other. �
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0.30

�

Integration and Expectation

1.3

�

1.4

�

1.5

�

1.6 If (Ω, (pω)ω∈Ω) is a discrete probability space (with the associated probability mea-
sure µ) and f : Ω→ [0,+∞] is a function. Show that∫

Ω
f dµ = ∑

ω∈Ω
f (ω)pω (18)

On a discrete probability space, we can decompose all simple functions into supersimple
functions s = ∑ω∈S δωsω where S ⊂ Ω is a finite set which represents the support of s,
and δω is the indicator of the singleton set 1{ω} and sk ∈ [0,+∞]. Thus a simple function
s ≤ f consists of some finite S ⊂ Ω and values sω for ω ∈ S such that sω ≤ f (ω). The
expectation of such a simple function is

Simp
∫

s = ∑
ω∈S

sω pω (19)

Its pretty clear that the supremum of all such expression is the sum∫
f = ∑

ω∈Ω
f (ω)pω (20)

since this sum is an upper bound for all of the Simp
∫

s for s ≤ f and we can get arbitrarily
close to the integral with a finite number of terms. �

1.7

�
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1.8

�

1.9

�

1.11

�

1.19 Let E1, E2, . . . be a sequence of events with infn Pr(En) > 0. Show that with positive
probability an infinite number of the En hold.

Let E be the event that infinitely many of the En occur. Then the indicators satisfy 1E =
lim supn 1En , since the right hand side is 1 for all samples ω where 1En(ω) = 1 infinitely
often and 0 when 1En(ω) = 0 eventually. Taking complements, 1Ec = lim infn 1Ec

n , so, by
Fatou’s lemma

Pr(Ec) = E 1Ec = E lim inf
n

1Ec
n ≤ lim inf

n
E 1Ec

n = lim inf
n

Pr(Ec
n) ≤ sup

n
Pr(Ec

n) < 1 (21)

Therefore Pr(E) > 0
�

1.20 Let p1, p2, · · · ∈ [0, 1] be a sequence such that ∑∞
n=1 pn = +∞. Show that there

exists a sequence of events E1, E2, . . . modeled by some probability space Ω such that
Pr(En) = pn for all n such that almost surely infinitely many of the En occur.

Just take the events En to be independent. Let Fm be the event that none of the events En
occur for n ≥ m. Then by independence

Pr(Fm) = ∏
n≥m

Pr(Ec
n) = ∏

n≥m
(1− pn) ≤ exp

(
− ∑

n≥m
pn

)
= exp(−∞) = 0 (22)

Let F = ∪∞
m=1Fm be the event that only finitely many of the En occur. Then Pr(F) ≤

∑m Pr(Fm) = 0, and therefore En occurs infinitely often almost surely. �

1.26 (Scheffe’s lemma) Let X1, X2, . . . be a sequence of absolutely integrable scalar ran-
dom variables which converge almost surely to X = limn Xn, another absolutely inte-
grable scalar random variable. Prove that

E|Xn − X| → 0 if and only if E|Xn| → E|X| (23)
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For any two numbers, the difference in their magnitudes is less than the magnitude of
their difference. If they have the same sign, these quantities are the same, but if they have
different signs, the latter is larger. In other words, ||a| − |b|| ≤ |a− b|. From this it follows
that

|E|Xn| − E|X|| ≤ E||Xn| − |X|| ≤ E|Xn − X| (24)

If the right hand side tends to zero, the so does the left hand side, and therefore E|Xn| →
E|X|. This proves the “only if” part.

For the “if” part, define

X′n = 1Xn<0 max(Xn,−|X|) + 1X>0 min(Xn, |X|) and X′′n = Xn − X′n (25)

Now on any sample ω ∈ Ω, take n large enough so sgn(Xn(ω)) = sgn(X(ω)). In this
case |X(ω)− X′n(ω)| = 0 if |X(ω)| ≥ |X′n(ω)| and |X(ω)− X′n(ω)| = |X(ω)− Xn(ω)|
otherwise. In other words, for large enough n, |X′n(ω)−X(ω)| ≤ |Xn(ω)−X(ω)|, and so
X′n(ω) → X(ω). This shows that limn X′n = X almost surely. By dominated convergence
it follows that E X′n → E X since X′n is dominated by |X| by construction.

By the definition of X′′n , and since |X′n| ≤ |Xn| by construction, it follows that |X′′n | =
|Xn − X′n| = |Xn| − |X′n|. Therefore

E|X− Xn| ≤ E|X− X′n|+ E|X′′n | = E|X− X′n|+ E|X′n| − E|Xn| (26)

The last two terms cancel in the limit since

lim
n

E|X′n| = E|X| = lim
n

E|Xn| (27)

The first equality follows from the hypothesis and the second from the dominated conver-
gence argument above. The first term in (26) is dominated in L1 since |X − X′n| ≤ 2|X|.
Since X′n → X almost surely, dominated convergence implies the first term tends to 0.
Thus the left hand side tends to 0, as we wished to prove.

�

1.35 LEet f : R→ [0,+∞] be a measurable function with
∫

R f (x) dx = 1. If one defines
m f (E) for any Borel subset E of R by the formula

m f (E) =
∫

E
f (x) dx (28)

show that m f is a probability measure on R with Stieltjes measure function F(t) =∫ t
−∞ f (x) dx. If X is a real random variable with probability distribution m f . In this case

X is absolutely continuous with respect to the Lesbegue measure and f is the Radon-
Nikodym derivative which, in this context, is called the probability density function (pdf).
Show that

E G(X) =
∫

R
G(x) f (x) dx (29)

with either G : R → [0,+∞] is an unsigned measurable function or G : R → C is
measurable with G(X) absolutely integrable.
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�

1.36 Let X be a random variable with probability desnity function x 7→ 1√
2π

e−x2/2 of
the standard normal distribution. Establish Stein’s identity

E XF(X) = E F′(X) (30)

whenever F : R → R is continuously differentiable function with F and F′ both of
polynomial growth. Use this identity to recursively establish the identities

E Xk =

{
0 k odd
(k− 1)!! k even

(31)

Using integration by parts with v′ = xe−
1
2 x2

and u = F(x)

E XF(X) =
1√
2π

∫
R

xF(x)e−
1
2 x2

dx

= − 1√
2π

F(x)e−
1
2 x2
∣∣∣∣∞
−∞

+
1√
2π

∫
R

F′(x)e−
1
2 x2

= E F′(X)

The assumption that F ∈ C2 justifies integration by parts. The growth condition on F
implies the boundary terms vanish at infinity. The grown condition on F′ implies F′(X)
is integrable.

Taking F(X) = Xk−1 we get

E Xk = (k− 1)E Xk−2 (32)

Since E X = 0 and E X2 = 1, induction gives the formulas in the problem statement. �

1.37 Let X be a real random variable with cumulative distribution function FX(x) =
Pr(X ≤ x). Show that

E etX =
∫

R
(1− FX(x))tetx dx for all t > 0 (33)

If X is nonnegative show that

E Xp =
∫ ∞

0
(1− FX(x))pxp−1 dx (34)

These are applications of Fubini’s theorem over the region y ≥ x either in R2 or in the
first quadrant.

E etX =
∫

R
ety µ(dy) =

∫
R

∫ y

−∞
tetx dx µ(dy) =

∫
R

∫ ∞

x
µ(dy) tetx dx

=
∫

R
(1− FX(x))tetx dx

(35)
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Here we’ve used the assumption t > 0 with the fundamental theorem of calculus to make
the identification ∫ y

−∞
tetx dx = etx∣∣y

−∞ = ety (36)

and the definition of the distribution to get

1− FX(x) = FX(∞)− FX(x) = µ((x, ∞)) =
∫ ∞

x
µ(dx) (37)

A similar calculation shows for non-negative X

E Xp =
∫ ∞

0
yp µ(dy) =

∫ ∞

0

∫ y

0
pxp dx µ(dy) =

∫ ∞

0

∫ ∞

x
µ(dy) pxp dx

=
∫ ∞

0
(1− FX(x))pxp dx

(38)

�

1.39 Let f : C→ R be a convex function and let X be a complex random variable with
X and f (X) both absolutely integrable. Show that

f (E X) ≤ E f (X) (39)

The fact f is convex implies that for all z, w ∈ C and t ∈ [0, 1]

f ((1− t)z + tw) ≤ (1− t) f (z) + t f (w) (40)

At any point a convex function has a supporting hyperplane, so we may write

f (z) ≥ f (z0) + c1 Re(z− z0) + c2 Im(z− z0) (41)

Using linearity of expectations

E f (X) ≥ f (z0) + c1(Re E X−<z0) + c2(Im E X− Im z0) (42)

Choosing z0 = E X gives Jensen’s inequality. �

1.40 Show the expressions ‖X‖p are non-decreasing in p for p ∈ (0, ∞]. In particular if
‖X‖p is finite for some p then its automatically finite for all smaller values of p

For any constant c and p ∈ (0, ∞) note that

‖c‖p = (E cp)
1
p = c

p
p = c (43)

Furthremore its clear the essential supremum of a constant is the constant so ‖c‖∞ = c.
This shows that for a probability space ‖c‖p = c for p ∈ (0, ∞].
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Let p′ > p for p, p′ ∈ (0, ∞) and let r = p′/p > 1. Then using Hölder’s inequality
with the functions 1 and Xp and exponents r and s = r/(r− 1).

E|X|p ≤ ‖|X|p‖r ‖1‖s = (E|X|pr)
1
r =

(
E|X|p′

) p
p′ (44)

Taking 1
p powers of both sides gives ‖X‖p ≤ ‖X‖p′ .

For p′ = ∞, since |X| ≤ ‖X‖∞ almost surely, the monotonicity of expectations implies

‖X‖p = (E|X|p)
1
p ≤ (E‖X‖p

∞)
1
p = ‖‖X‖∞‖p = ‖X‖∞ (45)

Thus ‖X‖p is monotonic for p ∈ (0, ∞]. �

1.41 Show that for any X ∈ L2

Pr(X 6= 0) ≥ (E|X|)2

E(|X|2) (46)

By Cauchy-Schwartz applied to 1X 6=0 and |X|

Pr(X 6= 0)E|X|2 = E I2
X 6=0 E|X|2 ≥ (E 1X 6=0|X|)2 = (E|X|)2 (47)

We used the fact that 12
A = 1A for any indicator (it only takes the values 0 or 1) and the

fact that |X| = 0 when X = 0 so 1X 6=0|X| = |X|. �

1.42 Establish Minkowskis inequality

‖X + Y‖p ≤ ‖X‖p + ‖Y‖p (48)

First assume that X, Y are nonnegative and bounded, so that 0 ≤ X, Y ≤ K for some
constant K > 0. By Hölder’s inequality

E(X |X + Y|p−1) ≤ ‖X‖p (E|X + Y|q(p−1))
1
q = ‖X‖p (E|X + Y|p)

p−1
p

= ‖X‖p ‖X + Y‖p−1
p

(49)

In the exponents I’ve used variations of q = p/(p− 1). Similarly

E(Y |X + Y|p−1) ≤ ‖Y‖p ‖X + Y‖p−1
p (50)

Utilizing the fact that for these nonnegative random variables X + Y = |X + Y|

‖X + Y‖p
p = E|X + Y|p = E(X |X + Y|p−1) + E(Y |X + Y|p−1)

≤ (‖X‖p + ‖Y‖p)‖X + Y‖p−1 (51)
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Note that if ‖X + Y‖p = 0, then (48) is trivially true, and we may ignore that case.
Furthermore, because X, Y are bounded by K, we know X + Y is bounded by 2K, so
‖X + Y‖p < ∞. Thus we may cancel ‖X + Y‖p−1 from both sides to yield (48).

We may extend (48) to unbounded nonnegative random variables, applying the in-
equality to max(X, K) and max(Y, K) and then using the monotone convergence theorem
as K → ∞. To extend the inequality to random variables which take negative values, note
that

‖X + Y‖p ≤ ‖|X|+ |Y|‖p ≤ ‖|X|‖p + ‖|Y|‖p = ‖X‖p + ‖Y‖p (52)

�

1.43 If X ∈ L2 is non-negative and θ ∈ [0, 1], establish the Paley-Zygmund inequality

Pr(X > θ E(X)) ≥ (1− θ)2 (E X)2

E X2 (53)

Suppose X is a nonnegative random variable. From the trivial inequalities

E(X; X ≤ K) ≤ E(K; X ≤ K) ≤ E K = K (54)

it follows that E(X; X > K) ≥ E X− K. Therefore taking K = θ E X

E(X; X > θ E X) ≥ (1− θ)E X (55)

By Cauchy-Schwartz

(E(X; X > θ E X))2 = (E X1X>θ E X)
2 ≤ E X2 E 12

X>θ E X = (E X2)Pr(X > θ E X) (56)

By combining these two ineqaulities, the Paley-Zygmund inequality follows

(1− θ)2(E X)2 ≤ (E X2)Pr(X > θ E X) (57)

Note that the equation in exercise 1.41 is a special case of Paley-Zygmund involving
nonnegative random variable |X| and θ = 0. �

1.44 Let X be a non-negative random variable that is almost surely bounded but not
identically zero. Show that

Pr
(

X ≥ 1
2

E X
)
≥ 1

2
E X
‖X‖∞

(58)

Using boundary case the Hölder inequality for p = ∞, q = 1 for the functions 1X≥θ E X
and X we get

E X1X>θ E X ≤ ‖X‖∞ E 1X>θ E X = ‖X‖∞ Pr(X > θ E X) (59)

12



Equation (55) gives a lower bound for the left hand side. We conclude

Pr(X > θ E X) ≥ (1− θ)
E X
‖X‖∞

(60)

and the problem statement is the case when θ = 1
2 . The same argument shows for p−1 +

q−1 = 1

Pr(X > θ E X) ≥ (1− θ)q (E X)q

‖X‖q
p

(61)

�

Product measures and independence

2.3 (Finite Products)

�

2.4

�

2.6 Show that for any collection of probability spaces (Ωi,Fi, µi) for i ∈ A there is at
most one product measure µA.

hint:Adapt the uniqueness argument in theorem 1 with the monotone class lemma �

2.7 Let µ1, . . . , µn be probability measures on R. Let F1, . . . , Fn : R → [0, 1] be their
Stieltjes measure functions. Show that µ1 × · · · × µn is the unique probability measure
on Rn whose Stietljes transform is the tensor product (t1, . . . , tn) 7→ F1(t1) . . . Fn(tn) of
F1, . . . , Fn

�

2.8 Extension Problem

�

2.9 Show that for any (Ωi,Fi)i∈A and µB for finite B ⊂ A as in the above extension
problem there is at most one probability measure µA with the stated properties.

�
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2.13 Kolmogorov extension theorem alternative form

�

2.15

�

2.18 A random variable X is independent of itself if and only if X is almost surely equal
to a constant.

For any A ⊂ R,

Pr({X ∈ A})Pr({X ∈ A} ∩ {X ∈ A}) = Pr({X ∈ A})Pr({X ∈ A}) (62)

Thus Pr(X ∈ A) = 0 or Pr(X ∈ A) = 1. Thus if A, B ⊂ R are disjoint, then at most
one of {X ∈ A} and {X ∈ B} has positive probabilty, and that set is almost sure. For
note, if Pr(X ∈ A) > 0 then Pr(X ∈ B) = 1 and similarly for Pr(X ∈ B). But then
Pr(X ∈ A ∪ B) = Pr({X ∈ A} ∪ {X ∈ B}) = Pr(X ∈ A) + Pr(X ∈ B) = 2 which is
a contradiction. If R is a σ-compact complete metric space, then we can find a series of
nesting sets A1 ⊃ A2 ⊃ . . . such that the diameter of An → 0 with Pr(An) = 1 and
Pr(Ac

n) = 0. By completeness
⋂

n An = {x} for some singleton with Pr(X = x) = 1 �

2.19 Show that a constant (deterministic) random variable is independent of any other
random variable

Let N be a null event with Pr(N)− 0. Then by monotonicity, any measurable event N′ ⊂
N is also null since Pr(N′) ≤ Pr(N) = 0. Suppose S is an almost sure event with Pr(S) =
1. Then for any other event E, Pr(E) = Pr(E ∩ S) + Pr(E ∩ Sc) = Pr(E ∩ S) since E ∩ Sc is
a subset of a null set.

Say X : Ω→ R is constant so that X = c almost surely. For any A ⊂ R, if X is constant
than Pr(X ∈ A) = 1 or Pr(X ∈ A) = 0 depending on whether c ∈ A or not. Then for any
other random variable Y : Ω→ S and B ⊂ S

Pr({X ∈ A} ∩ {Y ∈ B}) =
{

0 = 0 · Pr(Y ∈ B) if c 6∈ A
Pr(Y ∈ B) = 1 · Pr(Y ∈ B) if c ∈ B

(63)

So the independence formula is satisfied for all A and B. �

2.20 Let X1, . . . , Xn be discrete random variables (i.e., each takes on contably many
values). Show taht X1, . . . , Xn are jointly independent if and only if

Pr(
n⋂

i=1

{Xi = xi}) =
n

∏
i=1

Pr(Xi = xi) (64)
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The “only if” is true because we can use the independence formula (16 in Tao’s notes) on
the events {Xi = xi} to arrive at the formula above. For the “if” part, it follows exercise 6
and the following

n

∏
i=1

Pr(Xi ∈ Si) =
n

∏
i=1

(
∑

xi∈Si

Pr(Xi = xi)

)

= ∑
x1∈S1

· · · ∑
xn∈Sn

n

∏
i=1

Pr(Xi = xi)

= ∑
x1∈S1

· · · ∑
xn∈Sn

Pr(X1 = x1, . . . , Xn = xn)

= Pr(X1 ∈ S1, . . . , Xn ∈ Sn)

(65)

�

2.21 Let X1, . . . , Xn be real scalar random variables. Show that X1, . . . , Xn are jointly
independent if and only if

Pr(
n⋂

i=1

{Xi ≤ xi}) = ∏ Pr(Xi ≤ ti) (66)

The “only if” is true because we can use the independence formula (16) on the events
{Xi ≤ ti}. For “if” note that the independence criterion says that, if X1, . . . , Xn are jointly
independent, the joint probability is given by the product measure of the marginal proba-
bility measures of each random variable. The formula in the problem statement is just the
formula in 2.7 for the Stieltjes transform of a product measure in probability terms. As
that problem shows, the product measure is the unique measure satisfying the formula. �

2.22 Let V be a finite dimensional vector space over a finite field F and let X be a
random variable drawn uniformly from V. Let 〈, 〉 → F be a non-degenerate bilinear
form on V and let v1, . . . , vn be non-zero vectors V. Show that the random variables
〈X, v1〉, . . . , 〈X, vn〉 are jointly independent if and only if the vectors v1, . . . , vn are lin-
early independent.

Let d = dim V and let q = |F|, so that V has qd elements. Let v1, . . . , vd be any basis for V,
so that any v ∈ V can be written uniquely as v = f1v1 + · · ·+ fnvn with fi ∈ F. Then each
coefficient fi is uniform over F and the fi are jointly independent. This follows from the
fact that for any f = F, there are qd−1 elements of V with fi = f , so the probability fi = f
is qd−1/qd = 1/q. Similarly, if we fix any k coeffients, there are qd−k, so the probability of
of such an element is qd−k/qd = 1/qk. This proves indepdendence for singleton sets, and
the general case follows from 2.20.

If v1, . . . , vn are linearly independent, extend them to a basis v1, . . . , vd. Let V′ = Fd

be the canonical d-dimensional vector space over F, and define a linear transformation
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T : V → V′ by X 7→ (〈X, v1〉, . . . , 〈X, vd〉). Since the vi are linearly independent and 〈, 〉
is non-degernate, T is one-to-one. Since V and V′ have the same dimension, T is onto.
Let wi = T−1(ei) where ei is the d-tuple which is 0 except in the ith component, which is
1. Then the wi are a basis of V which satisfies X = ∑d

i=1〈X, vi〉wi for every X. From the
argument above, the quantities 〈X, vi〉 are jointly independent.

Conversely, if c1v1 + · · ·+ cnvn = 0 for some c1, . . . , cn not all 0 (without loss of gener-
ality, assume c1 6= 0), then

〈X, v1〉 = −c−1
1 (c2〈X, v2〉+ c3〈X, v3〉+ · · ·+ cn〈X, vn〉) (67)

So given 〈X, v2〉 . . . 〈X, vn〉, the quantity 〈X, v1〉 is constant rather than uniformly dis-
tributed over F. Therefore its not independent of the other values. �

2.23 Given an example of three random variables X, Y, Z which are pairwise independent
but not jointly independent.

Let X, Y be independent and uniformly distributed over Z2 and let Z = X + Y. This is
the same as previous exercise letting V = Z2×Z2, v1 = (1, 0), v2 = (0, 1) and v3 = (1, 1).
Pairwise independence follows from the “if” part, and the failure of joint independence
follows from the “only if” part. �

2.24 Let X be a random variable taking values on Rn with the Gaussian distribution, in
the sense that

Pr(X ∈ S) =
1

(2π)n/2 =
∫

S
e−|x|

2/2 dx (68)

(where |x| denotes the Euclidean norm on Rn) and let v1, . . . , vm be vectors in Rn. Show
that the random variables X · v1, . . . , X · vm are jointly independent if and only if the
v1, . . . , vm are pairwise orthogonal TYPO

If the v1, . . . , vm are pairwise orthogonal, we can extend them to an orthonormal basis
v1, . . . , vn and let H be the orthogonal transformation which translates the standard basis
to this one. Letting Y = H−1X and note

Pr(Y ∈ S) =
1

(2π)n/2

∫
HS

e−|x|
2/2 dx

=
1

(2π)n/2

∫
S

e−|H
−1y|2/2 |det H−1| dy

=
1

(2π)n/2

∫
S

e−|y|
2/2 dy

(69)

The last line follows because |det H| = 1 and |X| = |HX| for orthogonal transformations.
But this shows that Y has the same distribution as X. The components of multivariate
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Gaussian are jointly independent since if S = S1 × · · · × Sn then

Pr(X ∈ S) =
1

(2π)n/2

∫
S1×···×Sn

e−x2
1+···+x2

n/2 dx

=

(
1√
2π

∫
S1

e−x2
1 dx1

)
· · ·
(

1√
2π

∫
Sn

e−x2
n dx1

)
= Pr(X1 ∈ S1) · · ·Pr(Xn ∈ Sn)

(70)

Since the components of Y are (X · v1, . . . , X · vn), so these quantities are also jointly or-
thogonal.

Conversely, suppose Y1 = X · v1, . . . , Yn = X · vn are jointly independent. Each is
a Gaussian since is the linear combination of Gaussian random variables, with E Yk =
(E X) · vk = 0 and Var Yk = |vk|2. Since functions of independent random variables are
also independent, we can rescale if necessary to get |vk| = 1 without affecting the inde-
pendence hypothesis. If m < n, exten to v1, . . . , vn where the vm+1, . . . , vn are chosen to
be orthonormal and orthogonal to v1, . . . , vn. (This can be done by extending to any basis
then creating orthornomal vectors in a way similar to the Graham-Schmidt algorithm).
Let P be any parallelpiped with edges parallel to v1, . . . , vn such that vk · x ranges over
some interval [ak, bk].

1
(2π)n/2

∫
P

e−|x|
2/2 dx = Pr(X ∈ P)

= Pr(Y1 ∈ [a1, b1]) . . . Pr(Yn ∈ [an, bn])

=

(
1√
2π

∫ b1

a1

e−u2
1/2 du1

)
· · ·
(

1√
2π

∫ bn

an
e−u2

n/2 dun

)
=

1
(2π)n/2

∫
P

e−((v1·x)2+···+(vn·x)2)/2 dx

(71)

Since this equation holds for all parallelpipeds P and the parallelpipeds generate the Borel
σ-algebra, almost surely it must be the case that

exp(−|x|2/2) = exp(−((v1 · x)2 + · · ·+ (vn · x)2)/2) = exp(−|Mx|2) (72)

where M is the matrix whose rows are given by v1, . . . , vn. But this is possible for all x
only if M is an isometry and |x| = |Mx|, which happens only if M is orthogonal. Thus
v1, . . . , vm are orthonormal, and by our construction, this implies v1, . . . , vm are orthonor-
mal. �
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2.25

(i) Show that two events E, F are independent if and only if

Pr(E ∩ F) = Pr(E)Pr(F) (73)

(ii) If E, F, G are events show that the condition Pr(E ∩ F ∩ G) = Pr(E)Pr(F)Pr(G) is
necessary but not sufficient to show that E, F, G are jointly independent.

(iii) Give (TYPO) an example of three events E, F, G that are pairwise independent but
not jointly independent

(i) There are four cases to consider.

(a) Pr(E ∩ F) = Pr(E)Pr(F) by hypothesis.
(b) Now note that Pr(E) = Pr(E ∩ Fc) + Pr(E ∩ F). Therefore Pr(E ∩ Fc) = Pr(E)−

Pr(E)Pr(F) = Pr(E)(1− Pr(F)) = Pr(E)Pr(Fc).
(c) Reversing the roles of F and E, Pr(Ec ∩ F) = Pr(Ec)Pr(F)
(d) Pr(Ec) = Pr(Ec ∩ F) + Pr(Ec ∩ Fc) so

Pr(Ec ∩ Fc) = 1− Pr(E)− (1 Pr(E))Pr(Fc)

= (1− Pr(E))Pr(Fc)

= Pr(Ec)Pr(Fc)

(74)

(ii) The condition is necessary since its the formula which corresponds to

Pr(1E = 1∩ 1F = 1∩ 1G = 1) = Pr(1E = 1)Pr(1F = 1)Pr(1G = 1) (75)

However, this formula doesn’t imply, for example, Pr(E ∩ F) = Pr(E)Pr(F). Take
a (convex) region with unit area. Choose some (convex) sub-region A with area
equal to 1/27. From the remaining 26/27, choose three regions E0, F0, G0 with areas
equal to 1/3-1/27 = 8/27. The remaining region N has area 2/27. Choose a point
uniformly and let event E = E0 ∪ A, and F = F0 ∪ A and G = G0 ∪ A. Then
Pr(E ∩ F ∩ G) = 1/27 = Pr(E)Pr(F)Pr(G) but Pr(E ∩ F) = Pr(A) = 1/27 as well.
Thus the events are not independent.

(iii) Take E = {X = 1} and F = {Y = 1} and G = {X + Y = 1} in problem
�

2.27 Let ε1, ε2, · · · ∈ {0, 1} be random variables that are indepenedent and identically
distributed copies of the Bernoulli random variable with expectation 1/2, that is to say
the ε1, ε2, . . . are jointly independent with Pr(εi = 1) = Pr(ε0) = 1/2 for all i.

(i) Show that the random variable ∑∞
n=1 2−nεi is uniformly distributed on the unit

interval [0, 1].

(ii) Show that the random variable ∑∞
n=1 2× 3−nεi has the distribution of the Cantor

measure.

18



�

2.28 Give an example of two square integrable real varaible X, Y which have vanishing
Cov(X, Y) but are not independent.

Let S1 = {(x, y) : x = y,−1 ≤ x, y ≤ 1}, S2 = {(x, y) : x = −y,−1 ≤ x, y ≤ 1}, S =
S1 ∪ S2. Choose a point from S uniformly, let X be the x-coordinate of the point and Y
be the y-coordinate. Then X and Y are uniformly distributed on [−1, 1] (and hence have
expectation 0). Also

Cov(X, Y) =
∫

S
XY =

∫
S1

XY +
∫

S2

XY =
∫ 1

−1
u2 du +

∫ 1

−1
−u2 du = 0 (76)

However, conditional on X, Y has the discrete uniform distribution on {X,−X} rather
than the uniform distribution over [−1, 1]. THerefore X and Y are not independent.

�

2.29

�

2.31 If (Xi)i∈A are a collection of random variables, show that (Xi)i∈A are jointly inde-
pendent random variables if and only if (σ(Xi))i∈A are jointly independent σ-algebras

�

2.32 Let X1, X2, . . . be a sequence of random variables. Show that (Xn)∞
n=1 are jointly

independent if and only if σ(Xn+1) is independent of σ(X1, . . . , Xn) for all natural num-
bers n.

�

Weak and Strong Law of Large Numbers
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3.2 Modes of Convergence Let Xn be a sequence of scalar random variables and let X
be another random variable.

(i) If Xn → X almost surely, show that Xn → X in probability. Give a counterexample
to show the converse does not necessarily hold.

(ii) Suppose that ∑n Pr(|Xn − X| > ε) < ∞ for all ε > 0. Show that Xn → X almost
surely. Give a counterexample to show that the converse does not necessarily hold.

(iii) If Xn → X in probability. Show there is a subsequence Xnj of the Xn such that
Xnj → X almost surely.

(iv) If Xn, X are absolutely integrable and E|Xn − X| → 0 as n→ ∞ show that Xn → X
in probability. Give a counterexample to show thte converse does not necessarily
hold.

(v) (Urysohn subsequence principle) Suppose that every Xnj of X has a further subse-
quence Xnjk

that converges to X in probability. Show that Xn also converges in X
in probability.

(vi) Does Urysohn’s subsequence principle hold if “in probability” is replaced with
“almost surely”?

(vii) If Xn converges in probabiity to X and F : R→ R or F : C→ C is continuous, show
that F(Xn) converges in probability to F(X). More generally, if for each i = 1, . . . , k
X(i)

n is a sequence of scalar random variables that converge in probability to X(i)

and F : Rk → R or F : Ck → C is continuous, show that F(X(1)
n , . . . , X(k)

n ) converges
in probability to F(X(1), . . . , X(k))

(viii) (Fatou’s lemma for convergence in probability) If Xn are non-negative and con-
verge in probability to X show that E X ≤ lim infn→∞ E Xn.

(ix) (Dominated convergence in probabilty) If Xn converge in probabilitiy to X and one
alomst surely has |Xn| ≤ Y for all n and some absolutely integrable Y, show that
E Xn converges to E X

Lemma 1. Let E1, E2, . . . be events. Then

Pr(Ek eventually) ≤ lim inf
n→∞

Pr(Ek) (77)

Proof. Let 1Ek be the indicator for Ek. Then I = lim infk 1Ek is the indicator for the event
that Ek happens eventually. For if I(ω) = 1 then for large enough n ω ∈ En and the
indicators are all 1. Conversely if I(ω) = 0 then ω 6∈ Ek infinitely often. (Similarly
lim supk 1Ek is the indicator for the event that Ek happens infinitely often). By Fatou’s
lemma

Pr(Ek eventually) = E(lim inf
k

1Ek) ≤ lim inf
k

Pr(Ek) (78)
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(i) By the lemma,

Pr(|X− Xn| ≤ ε eventually) ≤ lim inf
n

Pr(|X− Xn| ≤ ε) (79)

If Xn → X almost surely, the left hand side is 1, so the right hand side is also 1.
Therefore lim supn Pr(|X − Xn| > ε) = 0. Since the liminf is at least 0 and is bound
by the limsup, the two quantities are equal and the limsup is actually the limit.
Therefore Xn converges in probability. TODO counterexample for converse

(ii) By Borel-Cantelli, for all ε, |Xn − X| ≥ ε eventually with probability 1. But this is
essentially the definition of almost sure convergence. TODO converse is false

(iii) Let pn = Pr(|X − Xn| > ε). By hypothesis, pn → 0 as n → ∞, so we can find a
subsequence such that pnk ≤ 2−k. The Xnk satisfy the hypothesis of (ii) and therefore
converge almost surely.

(iv) Let pn = Pr(|X − Xn| > ε). There exists a subsequence such that pnk → lim sup pn.
By hypothesis, there is a subsequence such that pnkj

→ 0. But subsequences of se-
quences which have a limit must converge to the same limit. Therefore lim sup pn =
0 and hence (since lim inf pn ≥ 0 for a non-negative sequence) lim pn = 0. But this is
precisely the condition that Xn → X in probability.

(v) Let pn = Pr(|X − Xn| ≥ ε infinitely often). Using exactly the same reasoning on pn
as in (iv) lim pn → 0.

(vi) Markov’s inequality says that for every n and ε > 0

Pr(|Xn − X| > ε) ≤ E|Xn − X|
ε

(80)

By assumption, the limit of the right hand side is 0, so the limit of the left hand side
is also 0. TODO counterexample for converse

(vii) By continuity, for any ε > 0 we can choose δ such that |X − Xn| ≤ δ implies that
|F(X)− F(Xn)| ≤ ε. Therefore {|F(X)− F(Xn)| > ε} ⊂ {|X− Xn| > δ}. Hence

lim sup
n

Pr(|F(X)− F(Xn| > ε) ≤ lim Pr(|F(X)− F(Xn)| > δ) = 0 (81)

which shows that F(X)→ F(Xn) in probability.

For F : Rn → R continuity implies that ‖Xn − X‖2 =

√
∑i(X(i) − X(i)

n )2 < δ implies

|F(X)− F(Xn)| < ε. Thus if |X(i) − X(i)
n | < δ/

√
k for all n then |F(X)− F(Xn)| < ε.

Taking complements,

{|F(X)− F(Xn)| ≥ ε} ⊂
⋃

i

{|X(i) − X(i)
n | ≥ δ/

√
k} (82)
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Therefore
Pr(|F(X)− F(Xn)| ≥ ε) ≤∑

i
Pr(|X(i) − X(i)

n | ≥ δ/
√

k) (83)

The right hand side tends to 0 as n→ ∞ so F(Xn)→ F(X) converges in probability.

(viii) For any sequence Yn, since X → Xn in probability, for any ε > 0 lim infn 1|X>Xn|<ε =
1 almost surely. That’s because eventually 1|X>Xn|<ε with probability 1, and the
liminf only depends on the tail values of Yn. Therefore using the fact that X and Xn
are close on 1|X−Xn|<ε, Fatou’s lemma, and the fact that Xn is non-negative.

E X = E lim inf
n

X1|X−Xn|<ε

≤ E lim inf
n

Xn1|X−Xn|<ε + ε

≤ lim inf
n

E Xn1|X−Xn|<ε + ε

≤ lim inf
n

E Xn + ε

(84)

Since this holds for all ε > 0, the inequality in the problem statement holds

(ix) Let In = 1|X−Xn|<ε. Note limn In = 1 almost surely because Xn → X in probability,
and also |Xn In − XIn| < ε. Note

|E Xn − E X| ≤ |E Xn In − E Xn|+ |E XIn − E X|+ |E Xn In − E XIn| (85)

Now |E Xn In − E Xn| ≤ E|(1 − In)Xn| ≤ E(1 − In)Y. Now (1 − In)Y ≤ Y so by
dominated convergence E(1− In)Y → 0 since the integrand converges almost surely
to 0. Similarly |E XIn − E X| ≤ E|X|(1− In). The integrand is dominated by |X| and
converges almost surely to 0, so the integral tends to 0. Finally |E Xn In − E XIn| ≤
E|Xn In − XIn| ≤ ε. But ε is arbitrary, and we conclude that lim supn |E Xn − E X| is
bound by an arbitrarily small number and therefore must be 0.

�

3.3 Let X1, X2, . . . be a sequence of scalar random variables converging in probability
to anothe random variable X.

(i) Suppose Y is independent of each Xi. Show Y is independent of X

(ii) Suppose the X1, X2, . . . are jointly independent. Show X is almost surely constant.

Its a little subtle to show, but convergence in probability implies convergence in distribu-
tion. For any constants c, r consider the ball centered at c with radius r. Note |Xn − c| ≥ r
if |X− c| ≥ r + ε and |X− Xn| ≤ ε. So, taking complements

{|Xn − c| < r} ⊂ {|X− c| < r + ε} ∪ {|X− Xn| > ε} (86)
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So the probabilities satisfy

lim
n

Pr(|Xn − c| < r) ≤ Pr(|X− c| < r + ε) + lim
n

Pr(|Xn − X| > ε)

= Pr(|X− c| < r + ε)
(87)

Similarly since |X− c| ≥ r− ε if |Xn − c| ≥ r and |X− Xn| ≤ ε

Pr(|X− c| < r− ε) ≤ lim
n

Pr(|Xn − c| < r) (88)

Letting ε → 0 in These inequalities, the limit from above/limit from below properties of
probability measure imply that for the set Br(c), the ball of radius r centered at c.

lim
n

Pr(Xn ∈ Br(c)) = Pr(X ∈ Br(c)) (89)

Let F be the collection of measurable sets A such that limn Pr(Xn ∈ A) = Pr(X ∈
A). This is a monotone class by the upward and downward continuity properties of
probability. Its also an algebra (? is that right, what about intersections?). For example

lim
n

Pr(Xn ∈ Ac) = 1− lim
n

Pr(Xn ∈ A) = 1− Pr(X ∈ A) = Pr(X ∈ Ac) (90)

so F is closed under complements.
In any case

(i) By the independence of Y and Xn, and the the above property for limits of distribu-
tions

Pr(X ∈ A, Y ∈ B) = lim
n→∞

Pr(Xn ∈ A, Y ∈ B)

= lim
n→∞

Pr(Xn ∈ A)Pr(Y ∈ B)

= Pr(X ∈ A)Pr(Y ∈ B)

(91)

Since A and B are arbitrary, this shows that X and Y are independent.

(ii) For any n ≥ 1, we have X = limk→∞ Xn+k in probability, which, by mutual inde-
pendence, means that X is independent of X1, X2, . . . , Xn. Since X is indenpendent
of every finite subcollection of X1, X2, . . . , this means that X is independent of the
limit. This shows X is independent of itself, and, hence, that X is a constant (by 2.18)

�

3.9 If X is geometric distribution with parameter p for some 0 < p ≤ 1 then X has mean
1
p and variance 1−p

p
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First note these identities, found by differentiating the geometric series term-by-term

S1(x) = ∑
k≥0

kxk−1 =
d

dx ∑
k≥0

xk =
d

dx
1

1− x
=

1
(1− x)2 (92)

S2(x) = ∑
k≥0

k(k− 1)xk−1 =
d

dx ∑
k≥0

kxk−1 =
d

dx
1

(1− x)2 =
2

(1− x)3 (93)

For X, discrete with Pr(X = k) = pk = (1− p)k−1p, we use the above identities to get

E X = ∑
k

k(1− p)k−1p = pS1(1− p) =
1
p

(94)

E X2 = ∑
k

k2(1− p)k−1p = p(1− p)S2(1− p) + pS1(1− p) =
2− p

p2 (95)

Var X = E X2 − (E X)2 =
1− p

p2 (96)

�

3.10 (Second Borel-Cantelli lemma) Let E1, E2, . . . be a sequence of jointly independent
events. If ∑∞

n=1 Pr(En) = ∞ show that almost surely an infinite number of the En hold
simultaneously.

Consider Sn = ∑n
i=1 1Ei .

sn := E Sn =
n

∑
i=1

Pr(Ei) (97)

vn := Var Sn =
n

∑
i=1

Var(1Ei) =
n

∑
i=1

Pr(Ei)− Pr(Ei)
2 ≤ sn (98)

Therefore by Chebyshev’s inequality

Pr
(
|Sn − sn| ≥

1
2

sn

)
≤ 4vn

s2
n
≤ 4

sn
→ 0 (99)

However, the event that limn→∞ Sn is finite is a subset of the event that Sn ≤ sn/2 eventu-
ally. If pn = Pr(Sn ≤ sn/2) then the probability this inequality holds eventually is bound
by lim infn→∞ pn, which is 0 by the above inequality. Thus, almost surely Sn is infinite
and, hence, an infinite nuber of the Ek occur. �

3.11 (Infinite Monkey Theorem) Let X1, X2, . . . be iid random variabls drawn uni-
formly from a finite alphabet A. Show that almost surely, every finite word a1a2 . . . ak
appears infinitely often in the string X1X2X2 . . .
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Let Tn be the event that Xnk+1 = a1, Xnk+2 = a2, . . . , xn(k+1) = ak. The Tn are all inde-
pendent and Pr(Tn) = |A|−k > 0. Hence ∑n Pr(Tn) → ∞ and therefore by the second
Borel-Cantelli theorem, infinitely many of the Tn occur. �

3.12 (Triangular Arrays) Let (Xi,n)i,n∈N;i≤n be a triangular array of scalar random vari-
ables Xi,n such that for each n the row X1,n, . . . , Xn,n is a collection of independent ran-
dom variables. For each n, we form the partial sums

Sn = X1,n + · · ·+ Xn,n (100)

(i) (Weak law) If all the Xn have mean µ and supi,n|Xi,n|2 < ∞, show that Sn/n con-
verges in probability to µ

(ii) (Strong law) If all the Xi,n have mean µ and supi,n|Xi,n|4 < ∞ show that Sn/n con-
verges almos surely to µ

(i) Let M = supi,n E|Xi,n|2. Note Var Xi,n = E X2
i,n − µ2 ≤ M as well, so Var Sn ≤ nM.

By Chebyshev’s lemma

Pr(|Sn/n− µ| > ε) ≤ M
ε2n
→ 0 (101)

This shows that Sn/n→ µ in probability.

(ii) For any q > p, set r = q/p > 1l and use Hölder’s inequality to find

E Xp ≤ (E(Xp)r)1/r(E 1s)1/s = (E Xq)1/r where
1
r
+

1
s
= 1 (102)

Hence if p < q then ‖X‖p ≤ ‖X‖q. Now supposing for p ∈N we have supi‖Xi‖p <
∞. Then also we have for any constant a ∈ R, supi‖Xi + a‖p < ∞. This follows from

E(Xi + a)p =
p

∑
k=0

(
p
k

)
ap−k E Xk

i ≤
n

∑
k=0

(
p
k

)
ap−k‖Xi‖k

p = (‖Xi‖p + a)p (103)

Hence supi‖Xi + a‖p ≤ supi‖Xi‖p + a < ∞.

Let N = supi,n E|Xi,n − µ|4 < ∞. Let Zi,n = Xi,n − µ, and let’s compute using
Markov’s inequality

Pr(|∑
i

Xi,n − µn| ≥ εn) ≤ E(∑i Xi,n − µn)4

ε4n4

=
1

ε4n4

(
∑
i 6=j

Var Xi,n Var Xi,n + ∑
k

E(Xi,k)

)

≤ 1
ε4n4

((
n
2

)
M + nN

)
= O(n−2)

(104)
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Thus by Borel-Cantelli, almost surely at most finitely many of the inequalities |∑i Xi,n/n−
µ| ≥ ε are satisfied, which implies that ∑i Xi,n/n→ µ as n→ ∞ almost surely.

�

3.13 An Erdös-Renyi graph (V, E) on n vertices is a random variable on the set of graphs
such that the events that the edge {i, j} ∈ E are jointly independent with probability p.
For each n let (Vn, En) be an Erdös-Renyi graph with p = 1

2 .

(i) If |En| is the number of edges, show that |En|
/
(n

2)→ 1/2 almost surely

(ii) If |Tn| is the number of triangles in (Vn, En) show that |Tn|
/
(n

3) → 1/8 in probabil-
ity.

(iii) Show that in fact |Tn|
/
(n

3)→ 1/8 almost surely.

(i) Consider the triangular array X{i,j},n where the index runs over all subsets of {1, 2, . . . , n}
of 2 elements {i, j} and represents the event {i, j} ∈ En. From the definition of
the Erdös-Renyi graph the X{i,j},n are independent with E X{i,j},n = 1/2. Further-
more E|X{i,j},n|p = 1 for any p > 1 since its a binomial random variable. Hence
by exercise 12, the row-wise averages converge to 1/2 almost surely. Since |En| =
∑{i,j}⊂En X{i,j},n, the law of large numbers is just the statement |Tn|

/
(n

2)→ 1/2

(ii) Consider the triangular array Y{i,j,k},n where the index runs over all subsets of {1, 2, . . . , n}
of 2 elements {i, j} and represents the event {{i, j}, {j, k}, {k, i}} ⊂ En. (In words,
X{i,j,k},n is the event that the graph (Vn, En) contains the triangle with edges {i, j}
and {j, k} and {k, i}). Clearly we have

Y{i,j,k},n = X{i,j},nX{j,k},nX{k,i},n (105)

From this and independence, its immediate that E Y{i,j,k},n = (1/2)3 = 1/8. Now
|Tn| = ∑{i,j,k}⊂[n]} Y{i,j,k},n so let’s compute E|Tn|2. By linearity this the sum of all
expressions of the form E Y{i,j,k},nY{i′,j′,k′},n. Let’s consider the cases

1) {i, j, k} and {i′, j′, k′} are disjoint. In this case

E Y{i,j,k},nY{i′,j′,k′},n = E X{i,j},nX{j,k},nX{k,i},nX{i′,j′},nX{j′,k′},nX{k′,i′},n
= (1/2)6 = 1/64

(106)

There are (n
3)(

n−3
3 ) such cases.

2) If |{i, j, k} ∩ {i′, j′, k′}| = 1. As a representative case, let i = i′ with the rest
distinct. Even though the triangles share a vertex, all of the edges are disjoint,
hence

E Y{i,j,k},nY{i,j′,k′},n = E X{i,j},nX{j,k},nX{k,i},nX{i,j′},nX{j′,k′},nX{k′,i},n
= (1/2)6 = 1/64

(107)

There are 3(n
3)(

n−3
2 ) such cases.
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3) If |{i, j, k} ∩ {i′, j′, k′}| = 2. As a representative case, let i = i′ and j = j′ with the
rest distinct. The triangles share one vertex

E Y{i,j,k},nY{i,j,k′},n = E X2
{i,j},nX{j,k},nX{k,i},nX{j,k′},nX{k′,i},n

= (1/2)5 = 1/32
(108)

There are 3(n
3)(

n−3
1 ) such cases.

4) If |{i, j, k} ∩ {i′, j′, k′}| = 3. The triangles are the same

E Y2
{i,j,k},n = E X2

{i,j},nX2
{j,k},nX2

{k,i},n

= (1/2)3 = 1/8
(109)

There are (n
3) such cases.

From this we compute

Var |Tn| = E |Tn|2 − (E|Tn|)2

=
1
64

(
n
3

)(
n− 3

3

)
+

3
64

(
n
3

)(
n− 3

2

)
+

3
32

(
n
3

)(
n− 3

1

)
+

1
8

(
n
3

)
− 1

64

(
n
3

)2

=
1
64

(
n
3

)((
n− 3

3

)
+ 3
(

n− 3
2

)
−
(

n
3

))
+ O(n4)

= O(n4)
(110)

Essentially the cancelation comes from the identity (n
k) = ∑k

l=0 (
n−m
k−l )(

m
l ). We get an

extra term of cancelation because triangles with a common vertex are still indepen-
dent. Hence from Chebyshev’s inequality

Pr
(∣∣∣∣|Tn|

/(n
3

)
− 1

8

∣∣∣∣ ≥ ε

)
≤ Var |Tn|

/(n
3

)2

ε2 = O(n−2) (111)

The right hand side tends to 0, so |Tn|
/
(n

3)→ 1/8 in probability

(iii) Since ∑ n−2 is summable, we can apply Borel-Cantelli to the probability (111) to
show only almost surely only finitely many of the inequalities are violated. Hence,
|Tn|

/
(n

3)→ 1/8 almost surely.
�
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3.14 For each n let An = (aij,n)1≤i,j≤n be a random n× n matrix (i.e., a random variable
taking values in the space Rn×n or Cn×n of n × n matricies) such that the entries aij,n
of An are jointly independen in i, j and take values in {−1,+1} with probability of 1/2
each. (This is called a random sign matrix). We do not assume independence for the
sequence A1, A2, . . . .

(i) Show that the random variables tr An A∗n/n2 are deterministically equal to 1

(ii) Show that for any natural number k the quantities E tr(An A∗n)k/nk+1 are bounded
uniformly in n.

(iii) if ‖An‖op denotes the operator norm of An and ε > 0 show that ‖An‖op/n1/2+ε

converges almost surely to 0 and that ‖An‖op/n1/2−ε diverges almost surely to
infinity. (Use the spectral theorem to relate ‖An‖op with tr(An A∗n)k)

(i) If An = (aij) and B = (bij) then tr AB = ∑ij aijbij. When B = A∗ then bij = aji so
tr AA∗ = ∑ij a2

ij. Since aij = ±1 each term in the sum is 1 and there are n2 terms so
tr An A∗n/n2 = 1.

(ii) Let the rows of An be given by Xi,n. Then Xi,n is a random vector with each com-
ponent equal to ±1. The matrix An A∗n is given by (〈Xi,n, Xj,n〉) where 〈X, Y〉 is the
inner product of vectors X and Y. If M = (mij) then by induction we can show

tr Mk = ∑
1≤i1,...,ik≤n

mi1,i2mi2,i3 · · ·mik−1,ik mik,i1 (112)

(In words, the subscripts are taken cyclically in pairs). Therefore we have

E(tr AA∗)k = ∑
1≤i1,...,ik≤n

E〈Xi1,n, Xi2,n〉〈Xi2,n, Xi3,n〉 · · · 〈Xik,n, Xi1,n〉

= ∑
1≤i1,...,ik≤n

E

(
∑

1≤j1≤n
ai1 j1 , ai2 j1

)(
∑

1≤j1≤n
ai2 j2 ai3 j2

)
· · ·(

∑
1≤jn≤n

aik jk ai1 jk

)
= ∑

1≤i1,...,ik≤n
1≤j1,...,jk≤n

E ai1 j1 ai2 j1 ai2 j2 ai3 j2 · · · aik jk ai1 jk

(113)

We consider this sum term by term. In a given term, we can group the various aij
factors on. If any of them occurs an odd number of times, then the expectation of that
term is 0 since, after grouping, the factors are independent and E ap

ij = (−1)p(1/2)+
1p(1/2) = 0. If all of them occurs an even number of times, then the term is 1. There
appear to be n2k terms, but we will show that all but O(nk+1) are 0.

The indices i, j occur in a particular pattern which we can visualize as a cycle on
a bipartite multi-graph. One part of the vertices consists of the values {1, . . . , n}
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which correspond to the i’s and the other part consists of the values {1, . . . , n}which
correspond to the j’s, and an edge occurs in this graph if the factor aij occurs in the
term. Thus each edge in the multigraph must occur an even number of times, and
we can group those edges in pairs. For example, for any choice of i1, i2, . . . , ik and j
such that j1 = j2 = · · · = jk = j then the term is of the desired form. Similarly for
any choice j1, j2, . . . , jk and i such that i1 = i2 = · · · = ik = i then the term is of the
desired form. (In terms of the multigraph, these cases correspond to a star pattern
eminating from the single value on one part of the vertices).

We can group terms by their “cyclic shape” on the bipartate multigraph. That is,
we can replace the the distinct values of the vertices i and the distinct values of j
with any other collection of distinct values (such that there are the same number of
distinct values) and trace the same cyclic path through the new vertices. If there are
d1 distinct i’s and d2 distinct j’s in a given “cyclic shape” then there are ( n

d1
)( n

d2
) =

O(nd1+d2) terms with the same shape. The number of shapes is a function of k not of
n so as n → ∞ this corresponds to a constant factor we need not concern ourselves
with.

So to prove that E(tr AA∗)k/nk+1 is bounded uniformly in n we need show that
d1 + d2 ≤ k+ 1. The number of distinct vertices on a path of length 2k is at most k+ 1.
However since each edge must be paired with another edge in order that a term be
non-zero, the second time an edge appears we are revisiting a vertex previously
counted. Thus in the path at least k of vertices are revisted by the path. Thus at
most k + 1 vertices are visited on the cycle corresponding to this shape. The bound
is tight, as shown by the “star” examples given above.

(iii) The operator norm satisfies

‖A‖op = sup
‖v‖=1

‖Av‖ = sup
‖v‖=1

〈Av, Av〉1/2 = sup
‖v‖=1

〈A∗Av, v〉1/2 (114)

Now A∗A is symmetric and positive definite, so we can diagonalize the matrix with
an orthogonal basis. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues and v1, . . . , vn
the corresponding orthogonal eigenbasis. If v = ∑i aivi then ‖v‖2 = ∑i a2

i = 1 and
‖Av‖2 = ∑i λia2

i . Clearly this is maximized when a1 = 1 and ai = 0 for i > 1. Thus
‖A‖op = λ1/2

1 .

Furthermore note that the eigenvalues of (A∗A)k are λk
1, . . . , λk

n. Therefore tr(A∗A)k =

∑i λk
i so

lim
k→∞

(tr(A∗A)k)1/k = lim
k→∞

λ1(1 + (λk
2 + · · ·+ λk

n)/λk
1)

1/k

≤ λ1 lim
k→∞

exp(
n

∑
i=2

(λi/λ1)
k/k)

= λ1

(115)

Since we also have the simple inequality tr(A∗A)k ≥ λk
1,

lim
k→∞

(tr(A∗A)k)1/k = λ1 = ‖A‖2
op (116)
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Hence

Pr(‖An‖op/n1/2+ε ≥ θ) = Pr(‖An‖2k
op ≥ θ2knk+2kε)

≤ E‖An‖2k
op
/

θ2knk+2kε

≤ E(tr A∗n An)
k/θ2knk+2kε

≤ Ck
/

θ2kn2kε−1

(117)

If we choose k such that kε > 1 then the quantity on the right is summable. By Borel-
Cantelli, almost surely only finitely many of the inequalities ‖An‖op/n1/2+ε ≥ θ.
Since θ > 0 is arbitrary, ‖An‖op/n1/2+ε → 0 almost surely.

Let Tk,n = tr(A∗n An)k. To prove the divergence statement, first let’s bound E T2
k,n =

E(tr(A∗n An)k)2. The terms of (tr(A∗n An)k)2 correspond to the union of two length 2k
cycles in the bipartate multigraph. In terms with non-zero expectation, each edge
appears an even number of times. If the two cycles overlap, then we can rearrange
the order of the edges to get a length 4k cycle. This is a non-zero term in E T2k,n =

E tr(A∗n An)2k = C2kn2k+1. If the cycles are disjoint, then it corresponds to an ordered
pair of cycles, which is a term in (E Tk,n)

2 = (E tr(A∗n An)k)2 = C2
k n2k+2. Hence

E(tr(A∗n An)
k)2 ≤ (E tr(A∗n An)

k)2 + E tr(A∗n An)
2k = C2kn2k+1 + C2

k n2k+2 (118)

By the Paley-Zygmund inequality

Pr(Tk,n ≥ θn E Tk,n) ≥ (1− θn)
2 (E Tk,n)

2

E T2
k,n

≥ (1− θn)
2 C2

k n2k+2

C2kn2k+1 + Ckn2k+2

(119)

If θn → 0 then lim infn→∞ Pr(tr(A∗n An)k ≥ θnCknk+1) = 1. In particular, since the An
are independent, by the second Borel-Cantelli lemma the inequality occurs infinitely
often.

Choose α > 1 and θn = αkKn−1−2εk (for large enough n since we need θn < 1 to
apply Paley-Zygmund)

Pr(Tk,n ≥ αkKn−1−2εk E Tk,n i.o.) ≤
Pr(‖An‖/n1/2−ε > K i.o.) + Pr((tr(A∗n An)

k)1/k/‖An‖2 > α i.o.) (120)

We’ve shown the probability on the left is 1. Letting k→ ∞, since ‖An‖2k/ tr(A∗n An)k →
1, the second term on the right tends to 0. (Is that right???). Hence ‖An‖/n1/2 is ar-
bitrarily large infinitely often, and we conclude it diverges.

�
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3.15 The Cramér random model for the primes is a random subset P of the natural numbers
with 1 6∈ P , 2 ∈ P and the events n ∈ P for n = 3, 4, . . . being jointly independent
with Pr(n ∈ P) = 1

log n (the restriction n ≥ 3 is to ensure that 1
log n ≤ 1). Its a simple yet

convincing probabilistic model for the primes {2, 3, 5, 7, . . . }which can provide heuristic
confirmations for conjectures in analytic number theory. Let π(x) = |{n ≤ x : n ∈ P}|

(i) (Probabilitic prime number theorem) Prove that

π(x)
x/ log x

→ 1, almost surely as x → ∞ (121)

(ii) (Probabilistic Riemann hypothesis) Show that if ε > 0 then the quantity

π(x)−
∫ x

2
dt

log t

x1/2+ε
→ 0, almost surely as x → ∞ (122)

(iii) (Probabilistic twin prime conjecture) Show that almost surely there are an infinite
number of elements p of P such that p + 2 also lies in P

(iv) (Probabilistic Goldbach conjecture) Show that almost surely all but finitely many
natural numbers n are expressible as the sum of two elements of P

(i) First we show that for a constant c > 0∣∣∣∣∣ x

∑
k=3

1
log k

−
∫ x

3

du
log u

∣∣∣∣∣ ≤ c (123)

This follows because if we define the series bn = 1/ log n −
∫ n+1

n du/ log u, each
term is positive and the sum converges. The series bn is summable because

bn =
1

log n
−
∫ n+1

n

du
log u

≤ 1
log n

− 1
log(n + 1)

=
log(1 + n−1)

log n log(n + 1)

≤ 1
n(log n)2

(124)

Hence by the integral test
∫ ∞

a du/u(log u)2 =
∫ ∞

exp a v−2 dv < ∞ where we made ths
substitution v = log u

Next we show that x
log x

/ ∫ x
3

du
log u → 1. If we integrate by parts we get∫ dx

log x
=

x
log x

−
∫ dx

(log x)2 (125)

By L’Hospital’s rule
∫ dx

(log x)2

/ ∫ dx
log x = 1/ log x → 0.
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Now we make the standard argument using Markov’s inequality

Pr

(
|π(x)−

x

∑
k=3

1/ log k| ≥ ε
x

log x

)
≤

E(π(x)−∑k≤x 1/ log k)4

ε4(x/ log x)4 (126)

The numerator is of the form E(∑k≤x Zk)
4 where Zk = Ek − E Ek and Ek = {k ∈ P}.

Hence E Zk = 0 and the Zk are independent. Therefore, expanding E(∑k≤x Zk)
4 we

are left with terms E Z2
i Z2

j = Var Xi Var Xj for i 6= j and also E Z4
k ≤ E Z2

k = Var Zk.

(Note |Zk| ≤ 1 so E Zq
k ≤ E Zp

k for p ≤ q). Thus we can bound

E(π(x)− ∑
k≤x

1/ log k)4 ≤∑
i 6=j

Var Zi Var Zj + ∑
k

Var Zk

≤
(

∑
k≤x

Var Zk

)2

+ ∑
k≤x

Var Zk

= O((x/ log x)2)

(127)

The last line follows since Var Zk = Var Ek = 1
log k −

1
(log k)2 and from the fact x

log x =∫ ( 1
log x −

1
(log x)2

)
dx. Therefore

Pr
(∣∣∣∣ π(x)

x/ log x
− 1
∣∣∣∣ ≥ ε

)
≤ (log x)2

ε4x2 (128)

The expression on the right is summable, so at most finitely many of the events
on the left happen, which implies that π(x)/(x/ log x) → 1 almost surely. (We
elided a step replacing ∑k≤x 1/ log k with x/ log x but this is justified by the asyptotic
equivalence proved at the begining).

(ii) Defining Zk = Ek − E Ek like in (i), for n ∈N let’s analyze the expression

E(π(x)− ∑
k≤x

1/ log k)n = E(∑
k≤x

Zk)
n =

x

∑
i1,i2,...,in=1

E Zi1 Zi2 . . . Zin (129)

A partition of n is a sequence n1 ≤ n2 ≤ nl such that n = n1 + · · ·+ nl and nk ∈N+.
Each in the sum above corresponds to a partition of n generated by grouping the
repetitions in the ik. Going the other way, given a partition of n with l terms, and a
selection of l indices {i1, . . . , il} ⊂ {1, . . . , x}we get a unique term on the right. Thus
we will group the terms on the right by their partition. Thus tuples (i1, . . . , in) ∈ [x]n

are in one-to-one correspondence with a partition (n1, . . . , nl) and an ordered subset
{i1, . . . , il} ⊂ [x] (in other words, the set of ik corresponding to the partition must be
distinct).

If the partition of n contains 1 as a term, then the expectation of that term is 0. Thus
we consider only partitions where each term is 2 or greater. (When we did this
analysis for n = 4 that left us with terms 4 = 2 + 2 and 4 = 4, since other terms
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corresponding to the partitions 4 = 3 + 1 and 4 = 1 + 1 + 1 + 1 equal zero). From
the bound E Zk

i ≤ E Z2
i , we sum over all terms corresponding to a particular partition

and get the following bound

∑
3≤i1,...,il≤x

ik distinct

Xn1
i1

. . . Xnl
il
≤ ∑

3≤i1,...,il≤x
ik distinct

X2
i1 . . . X2

il

≤ ∑
3≤i1,...,il≤x

X2
i1 . . . X2

il

=

(
∑

3≤k≤x
X2

k

)l

= O((x/ log x)l)

(130)

For fixed n, there are a finite number of partitions, so asymptotically E(∑k≤x Zk)
n

equals O((x/ log x)l) where l is the length of the longest partition of n such that
every term is at least 2. Clearly l = bn/2c.
For any ε > 0 choose n such that 2nε > 1. Then using Markov’s inequality, for large
enough x,

Pr

(
|π(x)−

x

∑
k=3

1/ log k| ≥ λx1/2+ε

)
≤ C(x/ log x)n

λnxn+2nε
=

C′

(log x)nx2nε
(131)

The expression on the right is summable so by Borel-Cantelli almost surely only
finitely many of the events on the left occur. Since ∑x

k=3 1/ log k −
∫ x

3 du/ log u is
bound by a constant and since λ > 0 we have for all ε > 0

π(x)−
∫ x

3 du/ log u
n1/2+ε

→ 0, almost surely (132)

(iii) Consider the event Tp = {p ∈ P and p+ 2 ∈ P}. Clearly Pr(Tp) = 1/(log p log(p+
2)). Furthermore if p′ 6= p and p′ 6= p + 2 then Tp and Tp′ are independent. Thus the
events T4, T8, T12, . . . are jointly independent. Note that by comparison with ∑k 1/4k

∑
k≥1

Pr(T4k) = ∑
k≥1

1
log(4k) log(4k + 2)

= ∞ (133)

By the second Borel-Cantelli almost surely infinitely many of the events T4k occur.
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(iv) Let G = {n : n = p1 + p2 where p2, p2 ∈ P}. Then we can write

Pr(n 6∈ G) = Pr

 ⋂
3≤k≤bn/2c

{k 6∈ P} ∪ {n− k 6∈ P}


≤
bn/2c

∏
k=3

(
1− 1

log k log(n− k)

)

≤
(

1− 1
log(n/2)2

)bn/2c−2

≤ C exp
(
− n/2

log(n/2)2

)
≤ C exp(−n1/2)

(134)

(The inequalities above hold for large enough n, not necessarily for every n). Now
∑ exp(n1/2) converges (the integral test results an instance of the gamma function).
Hence almost surely only finitely many n 6∈ G or, all large enough n are in G

�

3.16 (Hardy-Ramanujan theorem) Let x ≥ 100 be a natural number (so that in par-
ticular log log x ≥ 1) and let n be a natural number drawn uniformly from {1, . . . , x}.
Assume Merten’s theorem

∑
p≤x

1
p
= log log x + O(1) (135)

for all x ≥ 100 where the sum is over primes up to x.

(i) Show that the random variable ∑p≤x1/10 1p|n (where 1p|n is 1 when p divides n and
0 otherwise) has mean log log x + O(1) and variance O(log log x).

(ii) If ω(n) denotes the number of distinct prime factors of n show that
ω(n)/ log log n→ 1 in probability as x → ∞. More precisely show taht

ω(n)− log log n
g(n)

√
log log n

→ 0, in probability (136)

whenever g : N→ R is a function with g(n)→ ∞ as n→ ∞.

(i) For fixed x, the number of n that are divisible by p < x1/10 is bx/pc = x/p + O(1)
and hence the probability is p−1 + O(x−1). Let θ(n) = ∑p≤x1/10 1p|n. We conclude
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that

E θ(n) = E ∑
p≤x1/10

1p|n

= ∑
p≤x1/10

(
1
p
+ O(x1/10))

= log log(x1/10) + O(1) + O(x−9/10)

= log log x + O(1)

(137)

Let p and q be distinct primes. By unique factorization, pq | n iff p | n and q | n.
Therefore p | n and q | n are (approximately) independent events since

(E 1p|n)(E 1q|n) ≈ (pq)−1 ≈ E 1pq|n = E 1p|n1q|n (138)

Here the approximate equality≈ indicates that equality holds plus an error of O(x−1).
In particular this means that Cov(1p|n, 1q|n) = O(x−1). Thus

Var( ∑
p≤x1/10

1p|n) = ∑
p≤x1/10

1
p
− 1

p2 + O(x−8/10) = O( ∑
p≤x1/10

E 1p|n) = O(log log x)

(139)
(We’re using the crude bound |∑ p−1 − p−2| ≤ 2 ∑ p−1).

(ii) Now ω(n) = ∑p≤n 1p|n. Therefore

Pr
(∣∣∣∣ω(n)− log log n

g(n) log log n

∣∣∣∣ > ε

)
≤ E(ω(n)− log log n)2

ε2n2(log log n)2 (140)

Now without loss of generality we may assume n > x1/10 since for any event Ex we
have

Pr(Ex) ≤ Pr(Ex, n > x1/10) + Pr(n ≤ x1/10) = Pr(Ex, n > x1/10) + x−9/10 (141)

As x → ∞ the second term tends to 0. If n > x1/10 then

log log x− log log n ≤ log log x− log log x1/10 ≤ log 10 = O(1) (142)

Thus the difference is bounded by a constant independent of x. From the discussion
above, ω(n)− θ(n) = ∑x1/10<p≤n 1p|n is independent of θ(n). Furthermore

E(ω(n)− θ(n))2 ≤ 2 E(ω(n)− θ(n))

= 2(log log x− log log x1/10) + O(1) = O(1)
(143)

E(ω(n)− log log n)2 = E(ω(n)− θ(n) + θ(n)− log log n)2

= E(θ(n)− log log n)2 + E(θ(n)− log log n) + O(1)
= O(log log x)

(144)
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Using this estimate in (140) we get

Pr
(∣∣∣∣ω(n)− log log n

g(n) log log n

∣∣∣∣ > ε

)
≤ O(g(n)−1)→ 0 (145)

This shows the expression (136) converges to 0 in probability
�

3.17(Shannon entropy) Let A be a finite non-empty set of some cardinality |A| and let
X be a random variable taking values in A. Define the Shannon entropy

H(X) := − ∑
x∈A

Pr(X = x) log Pr(X = x) (146)

(i) Show that 0 ≤ H(X) ≤ log|A|. When does the upper bound hold?

(ii) Let ε > 0 and n ∈ N. Let X1, . . . , Xn be n iid copies of X, thus ~Xn := (X1, . . . , Xn)
is a random variable taking values in An and the distribution µX is a probability
measure on An. Let Ωn ⊂ An denote the set

Ωn := {~x ∈ An : exp(−(1 + ε)nH(X)) ≤ µ~Xn
({~x}) ≤ exp(−(1− ε)nH(X))}

(147)
Show that if n is sufficiently large then

Pr(~Xn ∈ Ωn) ≥ 1− ε (148)

and
exp((1− 2ε)nH(X)) ≤ |Ωn| ≤ exp((1 + 2ε)nH(X)) (149)

Roughly speaking, ~Xn is in practice concentrated in a set of size about exp(nH(X)) and
is roughly uniformly distributed on that set.

(i) The function log x is concave downward so E log f (x) ≤ log E f (x). In the case of
entropy, f (x) = Pr(X = x)−1, so

H(x) = −∑
x

Pr(X = x) log(Pr(X = x))

= ∑
x

Pr(X = x) log(Pr(X = x)−1)

≤ log(∑
x

Pr(X = x)Pr(X = x)−1) = log(|A|)

(150)

When Pr(X = x) = |A|−1 then H(X) = ∑x Pr(X = x) log(|A|) = log(|A|) and the
upper bound holds.

(ii) Define the random variable Yn = log Pr(Xn). Using the crude bound log x ≤ x− 1 <
x we find

E |Yn|p ≤ E Pr(X)p = ∑
x∈A

Pr(X = x)p+1 ≤
(

∑
x∈A

Pr(X = x)

)p+1

= 1 (151)
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Now
log Pr(~Xn = x)

n
=

1
n

n

∑
i=1

log Pr(Xi = xi) =
1
n

n

∑
i=1

Yi (152)

Thus by the law of large numbers, log Pr(~Xn=x)
n → E Y = −H(X) almost surely. From

convergence in probability we have for any ε > 0

Pr

(∣∣∣∣∣ log Pr(~Xn = x)
n

+ H(X)

∣∣∣∣∣ < εH(X)

)
→ 1 (153)

But the left hand side is precisely Pr(~Xn ∈ Ωn) > 1− ε for large enough n.

For any λ < 1, we have λ ≤ Pr(~Xn ∈ Ωn) ≤ 1 for large enough n. Crudely bounding
Pr(~Xn ∈ Ωn) = E 1Ωn

|Ωn|pmin ≤ E 1Ωn ≤ 1 ⇒ |Ωn| ≤ 1/pmin = exp((1 + ε)nH(X)) (154)

and also

|Ωn|pmax ≥ E 1Ωn ≥ λ ⇒ |Ωn| ≥ λ/pmax = λ exp((1− ε)nH(X)) (155)

Let λ → 1 to get the desired inequality. This is a little bit better than the problem
statement.

�

3.18 Let X1, X2, . . . be iid copies of an unsigned random variable X with infinite mean
and write Xn = X1 + · · ·+ Xn. Show that Sn/n diverges to infinity in probability.

For α > 0 consider the sequence of iid random variables X(α)
n = min(Xn, α). For all

p > 1 we have E|X(α)
n |p ≤ αp < ∞, so by the fourth-moment law of large numbers

S(α)
n /n→ E X(α) almost surely. Therefore we have the simple inequality

lim inf
n

Sn/n ≥ lim inf S(α)
n /n = E X(α) (156)

By monotone convergence the right hand side tends to infinity as α → ∞, which shows
Sn/n diverges.

�

3.19 With the notation of the above analysis of the St Petersburg paradox, show that
Sn

n log2 n is almost surely unbounded. (Hint: show Xn/n log2 n is unbounded and use
second Borel Cantelli)
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SUppose X has the St Petersburn distribution. We calculate

Pr(X ≥ m) = ∑
k≥dlog2 me

2−k = 2dlog2 me+1 (157)

Since dlog2 me > log2 m− 1 we have Pr(X ≥ m) > 1/m. Hence

∑ Pr(Xn ≥ Mn log2 n) > ∑
n

1
Mn log2 n

= ∞ (158)

The sum diverges by the integral test:
∫

dx/x log x = log log x. Since the Xn are inde-
pendent, by the second Borel-Cantelli lemma infinitely many of the events must occur.
Therefore for any M > 0

lim sup
n

Sn

n log2 n
≥ lim sup

Xn

n log2 n
≥ M (159)

and we conclude that the limsup is unbounded. �

3.20 A real random variable X is said to have a standard Cauchy distribution if it has the
probability density function x 7→ 1

π
1

1+x2 .

(i) Verify standard Cauchy distributions exist

(ii) Show a real random variable with the standard Cauchy distribution is not abso-
lutely integrable

(iii) If X1, X2, . . . are iid copies of a random variable X with the standard Cauchy dis-
tribution, show that |X1|+···+|Xn|

n log n converges in probability to 2
π but is almost surely

unbounded.

(i) The random variable exists by the standard Skorokhod construction, providing this
is actually a density fucntion. But it is since

1
π

∫ ∞

−∞

dx
1 + x2 =

1
π
(arctan(∞)− arctan(−∞)) = 1 (160)

(ii) Note that ∫ ∞

−∞

|x| dx
π(1 + x2)

= 2
∫ ∞

0

x dx
π(1 + x2)

=
log(1 + x2)

π

∣∣∣∣∞
0
= ∞ (161)

(iii) First we calculate the bound

Pr(X > m) =
∫ ∞

m

du
π(1 + x2)

≤
∫ ∞

m

du
πx2 = − 1

πx

∣∣∣∣∞
m
=

1
πm

(162)
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As an aside, this shows Cauchy random variables are weak L1. With an analogous
calculation we can show for m > 1 that Pr(X > m) ≥ 2/πm. Since the pdf is an
even function this gives the bound

∑
n

Pr(|Xn| ≥ Mn log n) ≥ 4
πM ∑

n

1
n log n

= ∞ (163)

Let Sn = |X1|+ · · ·+ |Xn|. Therefore for any M > 0, by the second Borel-Cantelli

lim sup
n

Sn

n log n
≥ lim sup

Xn

n log n
≥ M (164)

and the random variable.

Let Y≤n = min(|X|, n) and Y> = max(|X|, n) where X is a Cauchy random variable.
Then

E Y≤n =
∫ n

0

2x dx
π(1 + x2)

=
2 log n

π

Var Y>n ≤ E Y2
>n =

∫ n

0

2x2 dx
π(1 + x2)

≤ 2
π

∫ n

0
dx =

2n
π

(165)

Therefore

Pr(|
n

∑
i=1
|Xi| −m| ≥ λ) ≤ Pr(|

n

∑
i=1

Yi,≤n −m| ≥ λ/2) + Pr(
n

∑
i=1

Yi,>n ≥ λ/2) (166)

Using Markov’s inequality and independence, if m = n E Y≤n = 2
π n log n, then

Pr(|
n

∑
i=1

Yi,≤n −m| ≥ λ/2) ≤ 8n2

πλ2 (167)

Using a crude union bound

Pr(
n

∑
i=1

Yi,>n ≥ λ/2) ≤ n Pr(Y>n ≥ λ/2) ≤ 2n
π max(λ/2, n)

(168)

Hence choosing λ = εn log n we get for large enough n

Pr
(∣∣∣∣ |X1|+ · · ·+ |Xn|

n log n
− 2

π

∣∣∣∣ ≥ ε

)
≤ 8

πε2(log n)2 +
4

πε log n
→ 0 (169)

�
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3.21 (Weak law for triangular arrays) Let (Xi,n)i,n∈N:1≤i≤n be a triangular array of ran-
dom variabes, with the variables X1,n, . . . , Xn,n jointly independent for eacn n. Let Mn
be a sequence going to infinity and write Xi,n,≤ := Xi,n1|Xi,n|≤Mn and µn := ∑ Xi,n,≤.
Assume that

n

∑
i=1

Pr(|Xi,n| > Mn)→ 0 (170)

and
1

M2
n

n

∑
i=1

E |Xi,n,≤|2 → 0 (171)

as n→ ∞. Show that
X1,n + · · ·+ Xn,n − µn

Mn
→ 0 (172)

in probability

Let Ln =
⋂n

i=1{|Xi,n| ≤ Mn} be the event that all the Xi,n are “small” and let En be any
sequence of events. If wish to show Pr(En)→ 0, but it suffices to show that Pr(En ∩ Ln)→
0. That’s because by the union bound

Pr(En) ≤ Pr(En ∩ Ln) +
n

∑
i=1

Pr(En ∩ {|Xi,n| > Mn})

≤ Pr(En ∩ Ln) +
n

∑
i=1

Pr(|Xi,n| > Mn)

(173)

The second term on the right tends to 0 by assumption, so we only need to prove the first
term on the right tends to 0.

Of course in order to show (172) we wish to consider the event En = {|Sn − µn| >
εMn}. Let En,≤ = {|Sn,≤ − µn| > εMn} where Sn,≤ = X1,n,≤ + · · ·+ Xn,n,≤. Note that if
|Xi,n| ≤ Mn for i = 1, . . . , n then Sn = Sn,≤. Hence En ∩ Ln = En,≤ ∩ Ln ⊂ En,≤, and it
suffices to show that Pr(En,≤)→ 0 as n→ ∞.

The coup de grace comes from Chebyshev’s inequality. Let µi,n := E Xi,n,≤ and Yi,n =
Xi,n,≤ − µi,n. Then Sn,≤ − µn = ∑n

i=1 Yi,n and

Pr

(∣∣∣∣∣ n

∑
i=1

Yi,n

∣∣∣∣∣ > εMn

)
≤ E(∑n

i=1 Yi,n)
2

ε2M2
n

(174)

However, the Yi,n are independent and mean zero, and E X2
i,n = µ2

i,n + E Y2
i,n, so

E

(
n

∑
i=1

Yi,n

)2

=
n

∑
i=1

E Y2
i,n ≤

n

∑
i=1

E X2
i,n (175)

Hence

Pr(|Sn,≤ − µn| > εMn) ≤
1

ε2M2
n

n

∑
i=1

E X2
i,n → 0 (176)

We conclude that Pr(|Sn − µn|/Mn > ε) → 0 for all ε and therefore (Sn − µn)/Mn → 0
in probability. �
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3.23 Let X1, X2, . . . be iid copies of a real random variable X.

(i) Show that for every real number t one has almost surely that

1
n
|{1 ≤ i ≤ n : Xi ≤ t}| → Pr(X ≤ t) (177)

and
1
n
|{1 ≤ i ≤ n : Xi < t}| → Pr(X < t) (178)

as n→ ∞

(ii) Establish the Glivenko-Cantelli theorem: almost surely one has

1
n
|{1 ≤ i ≤ n : Xi ≤ t}| → Pr(X ≤ t) (179)

uniformly in t as n→ ∞.

(i) Consider the random variables Yi = 1Xi≤t and Y′i = 1Xi<t. The averages in the
problem statement in part (i) are precisely 1

n ∑i Yi and 1
n ∑i Y′i which, by the strong

law of large numbers, converge almost surely to E Y = Pr(X ≤ t) and E Y′ = Pr(X <
t) respectively.

(ii) We want to show that pointwise convergence implies uniform convergence, so this
is a sort of analog of Dini’s theorem. Let bxcm = bmxc/m be the greatest multiple
of 1

m which is less than or equal to x. Let FX : t 7→ Pr(X ≤ t) be the cumulative
distribution function and let Gn,X : t 7→ 1

n ∑n
i=1 1Xi≤t be the empirical distribution

function. All of these functions are monotonically nondecreasing in t and bounded
between 0 and 1.

Note that for all x ∈ R, |x − bxcm| ≤ 1
m . On the other hand if |x − y| ≤ 1

m then
|bxcm − bycm| ≤ 1

m since x and y are in the same bucket or adjacent buckets. Fixing
m for the moment, for k = 0, . . . , m let tk = inftbFX(t)cm = k

m be the transition point
where bFX(t)cm increses from k−1

m to k
m . Some care is needed for k = 0 and k = m

since it may be that FX(t) > 0 or FX(t) < 1 for all t ∈ R. We can define FX and
Gn,X on the extended real line [−∞, ∞] by identifying FX(−∞) = limt→−∞ FX(t)
and FX(∞) = 1 = limt→∞ FX(t) and similarly for Gn,X. With these conventions, for
t ∈ [tk, tk+1), bFX(t)cm = k

m and for no other points.

Since Gn,X converges to FX almost surely at each point t ∈ R, it almost surely con-
verges at any finite collection of points. Thus we may almost surely choose n large
enough so that |FX(tk) − Gn,X(tk)| ≤ 1

m for k = 0, . . . , m. Therefore for n large
enough

|bFX(tk)cm − bGn,X(tk)cm| ≤
1
m

for k = 0, . . . , m (180)

Hence for t ∈ [tk, tk+1)

k− 1
m

= bFX(tk)cm −
1
m
≤ bGn,X(tk)cm ≤ bGn,X(t)cm (181)
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and
bGn,X(t)cm ≤ bGn,X(tk+1)cm ≤ bFX(tk+1)cm +

1
m

=
k + 2

m
(182)

Since FX(t) = k
m on the interval [tk, tk+1), we have a bound for this interval

|bFX(t)cm − bGn,X(t)cm| ≤
2
m

(183)

Since n was choosen to be close at all of the interval endpoints simultaneously, this
shows means that (183) holds for all t ∈ [−∞, ∞]. Hence |FX(t) − Gn,X(t)| ≤ 3

m
for all t. By choosing m large enough this inequality can be made arbitrarily small,
showing that, almost surely, Gn,X converges uniformly to FX.

�

3.24 (Lack of strong law for triangular arrays) Let X be a random variable taking val-
ues in the natural numbers with Pr(X = x) = 1

ζ(3)
1

n3 where ζ(3) = ∑∞
n=1

1
n3 (this is an

example of the zeta distribution).

(i) Show that X is absolutely integrable

(ii) LEt (Xi,n)i,n∈N:1≤i≤n be independent copies of X. Show that the random variables
Sn =

X1,n+···+Xn,n
n are almost surely unbounded.

(i) This follows from

E|X| =
∞

∑
n=1

n Pr(X = n) =
∞

∑
n=1

n
ζ(3)n3 =

ζ(2)
ζ(3)

< ∞ (184)

(ii) Note that Pr(X ≥ m) ≈
∫ ∞

m
dx

ζ(3)x3 = O(m−2). Therefore, for large enough n

Pr(Sn/n ≥ M) ≥
n

∑
i=1

Pr(Xi,n/n ≥ M) ≥
n

∑
i=1

C
M2n2 =

C
M2n

(185)

Therefore, since the Sn are independent, and since ∑∞
i=1 Pr(Sn/n > M) = ∞, the

second Borel-Cantelli lemma implies that infinitely many of the events must occur.
But this is the same as saying that lim supn→∞ Sn/n ≥ M for any real M > 0, or
Sn/n is unbounded.

�

3.28 (Kronecker lemma) Let ∑∞
n=1 an be a convergent series of real numbers and let

0 < b1 ≤ b2 ≤ . . . be in increasing sequence with bn → ∞ as n → ∞. Show that
1
bn

∑n
i=1 aibi → 0 as n→ ∞
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Let Sn = ∑n
k=1 ak and let s = limn→∞ Sn. Using summation-by-parts and defining b0 = 0,

we see
n

∑
i=k

akbk = Snbn −
n−1

∑
k=1

Sk(bk+1 − bk) (186)

Let m be such that |Sn − s| < ε for all n > m. Then∣∣∣∣∣s(bn − bm)−
n−1

∑
k=m

Sk(bk+1 − bk)

∣∣∣∣∣ ≤ ε
n−1

∑
k=m

(bk+1 − bk) = ε(bn − bm) (187)

Adding the terms related to m (which, for fixed m, correspond to constants) and dividing
both sides by bn we see for large enough n∣∣∣∣∣s− 1

bn

n−1

∑
k=1

Sk(bk+1 − bk)

∣∣∣∣∣ =
∣∣∣∣∣s− 1

bn

n−1

∑
k=m

Sk(bk+1 − bk)

∣∣∣∣∣
+

∣∣∣∣∣ 1
bn

m−1

∑
k=1

Sk(bk+1 − bk)

∣∣∣∣∣+
∣∣∣∣ sbm

bn

∣∣∣∣
< 3ε

(188)

Since ε is arbitrary, this shows 1
bn

∑n−1
k=1 Sk(bk+1 − bk)→ s. Dividing both sides of (186) by

bn and taking limits as bn → ∞ shows

lim
n→∞

1
bn

n

∑
i=k

akbk = lim
n→∞

Sn − s = 0 (189)

�

3.29 (Kolmogorov three series theorem, one direction) Let X1, X2, . . . be a sequence of
jointly independent real random variables, and let A > 0. Suppose that ∑∞

n=1 Pr(|Xn| >
A) and ∑∞

n=1 Var(Xn1|Xn|<A) are absolutely convergent and that ∑∞
n=1 E Xn1|Xn|≤A is

convergent. Show that ∑∞
n=1 Xn is almost surely convergent.

Let Yn = Xn1|Xn|<A − E Xn1|Xn|<A. Then E Yn = 0 and Var Yn = E Y2
n = Var Xn1|Xn|<A.

We can write
N

∑
n=1

Xn =
N

∑
n=1

Yn +
N

∑
n=1

E Xn1|Xn|<A +
N

∑
n=1

Xn1|X|≥A (190)

By theorem 26, ∑∞
n=1 Yn is almost surely convergent because each term has mean zero and

∑∞
n=1 Var Yn < ∞. The second term is convergent by assumption. The third term almost

surely has finitely many terms by Borel Cantelli, since Pr(|Xn| > A). Therefore it is also
almost surely convergent. Therefore the event that ∑∞

n=1 Xn is convergent is an almost
sure event, since the intersection of a finite number of almost sure events is almost sure
(in this case, the three events that the terms above converge). �
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3.30 (Cheap law of the iterated logarithm) Let X1, X2, . . . be a sequence of jointly inde-
pendent real random variables of mean zero and bounded variance (so supn E X2

n < ∞).
Write Sn := X1 + · · ·+ Xn. Show that Sn/n1/2(log n)1/2+ε converges almost surely to 0
as n→ ∞ for any ε > 0. (Hint use theorem 26 and the Kronecker lemma).

Let B = supn E X2
n. Let Yn := Xn/n1/2(log n)1/2+ε. Note that E Yn = 0 and

∞

∑
n=1

Var Yn ≤ B
∞

∑
n=1

1
n(log n)1+2ε

< ∞ (191)

The sum is convergent by the integral test since
∫ dx

x(log x)1+2ε = 1
(log x)2ε . Therefore by

theorem 26, the following sum is convergent almost surely
∞

∑
n=1

Yn =
∞

∑
n=1

Xn

n1/2(log n)1/2+ε
< ∞ a.s. (192)

Applying Kroneker’s lemma with bn = n1/2(log n)1/2+ε we get

lim
n=0

X1 + · · ·+ Xn

n1/2(log n)1/2+ε
→ 0 a.s. (193)

�

3.31 Let X1, X2, . . . be iid copies of an absolutely integrable random variable X with
mean µ. Show that the averages Sn

n = X1+···+Xn
n converges in L1 to µ. That is to say

E
∣∣∣∣Sn

n
− µ

∣∣∣∣→ 0 (194)

as n→ ∞

WLOG, replacing Xn with Xn − µ, we can take µ = 0. For ε > 0, let Aε,n = {|Sn/n| > ε}.
By the weak law of large numbers, we can take n so large that Pr(Aε,n) < ε.

E|Sn/n| = EAc
ε,n |Sn/n|+ EAε,n |Sn/n|

≤ Pr(Ac
ε,n)ε + E|Sn/n|Pr(Aε,n)

≤ ε + ε E|Sn/n| → 0
(195)

�

3.32 A scalar random variable X is said to be weak L1 if one has

sup
t>0

t Pr(|X| ≥ t) < ∞ (196)

Markov’s inequality implies that every absolutely integrable random variable is in weak
L1, but the converse is not true. (e.g. random variables with the Cauchy distribution are
weak L1 but not absolutely integrable). Show that if X1, X2, . . . are copies of an unsigned
weak L1 random variable then there exist quantities an → ∞ such that Sn/an converges
in probability to 1, where Sn = X1 + . . . Xn. (Thus: there is a weak law of large numbers
for weak L1 random variables and a strong law for strong L1 random variables)
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WLOG assume that X is not strong L1, since in that case we have already proved a weak
law of large numbers with an = n. Let X≤n = min(X, n) and X>n = max(X, n). From
the weak L1 property we have Pr(X>n > m) ≤ C/ max(n, m). Let µn = E X≤n ≤ n. Note
that µn is an increasing sequence with limn↑∞ µn = E X = ∞ by monotonic convergence.
Furthermore

Var X≤n ≤ E X2
≤n ≤ n E X≤n = nµn (197)

Let an = nµn. Clearly an → ∞ as n → ∞. Using the same argument as the St Petersburg
problem we calculate

Pr(|X1,≤n + . . . Xn,≤n − nµn| > εan/2) ≤ 4 Var X≤n

ε2n2µ2
n
≤ 4

ε2nµn
→ 0 (198)

and for n large enough

Pr(X1,>n + . . . Xn,≤n > εan/2) ≤ nC
max(εan/2, n)

=
2C
εµn
→ 0 (199)

Now we can bound the probability of the event

Pr(|Sn − an| ≥ εan) ≤ Pr(|Sn,≤n − an| > εan/2) + Pr(Sn,>n > εan/2) (200)

and we have shown the terms on the right tend to 0 in the limit n→ 0. Hence Pr(|Sn/n−
1| > ε)→ 0 for every ε, or Sn/an → 1 in probability. �

Central Limit Theorem

4.5 For any natural number n let Xn be a discrete random variable drawn uniformly
from {0/n, 1/n, . . . , (n − 1)/n} and let X be the continuous random variable drawn
uniformly from [0, 1]. Then Xn converges in distribution to X. (A continuous random
variable can emerge as the limit of discrete random variables)

If G is continuous and compactly supported then it is uniformly continuous. Choose δ
such that |G(x)− G(y)| < ε whenever |x − y| < δ. Then choose N > δ−1 so that each
interval [k/n, (k + 1)/n] has length at most δ. Then for n > N we have∣∣∣∣∫ (k+1)/n

k/n
G(x) dx− 1

n
G(k/n)

∣∣∣∣ ≤ ∫ (k+1)/n

k/n
|G(x)− G(k/n)| dx =

ε

n
(201)

Summing these inequalities over k we get |E G(X)− E G(Xn)| ≤ ε for all n > N. This
proves convergence of the expectations. Since G is arbitrary, this proves vague conver-
gence. �
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4.7 (Portmanteau theorem) Show the following are equivalent

(i) E g(Xn)→ E g(X) for every continuous compactly supported g

(ii) lim supn→∞ Pr(Xn ∈ K) ≤ Pr(X ∈ K) for all closed sets K ⊂ R

(iii) lim infn→∞ Pr(Xn ∈ U) ≥ Pr(X ∈ U) for all open sets U ⊂ R

(iv) For any Borel set E whose topological boundary ∂E is such that Pr(X ∈ ∂E) = 0
one has

lim
n→∞

Pr(Xn ∈ E) = Pr(X ∈ E) (202)

• (i)⇒(ii) For closed K let iε,K be a function such that iε,K(x) = 1 whenever x ∈ K and
iε,K(x) = 0 whenever d(x, K) ≥ ε. (Here d(x, K) = infy∈K |x − y|) This exists by
Urysohn’s lemma, or just take iε,K(x) = max(1− d(x, K)/ε, 0). Then by (i)

lim sup
n→∞

Pr(Xn ∈ K) = lim sup
n→∞

E 1K(Xn) ≤ lim sup
n→∞

E iε,K(Xn) = E iε,K(X) (203)

By bounded convergence we can take the limit ε→ 0 to get

lim sup
n→∞

Pr(Xn ∈ K) ≤ lim
ε→0

E iε,K(X) = E 1K(X) = Pr(X ∈ K) (204)

• (ii)⇔ (iii) Taking complements, statement (ii) is the same as

1− lim inf
n→∞

Pr(Xn ∈ U) = lim sup
n→∞

1− Pr(Xn ∈ U)

= lim sup
n→∞

Pr(Xn ∈ Uc)

≤ Pr(X ∈ Uc)

= 1− Pr(X ∈ U)

(205)

Rearranging, this is the same as lim infn→∞ Pr(Xn ∈ U) ≥ Pr(X ∈ U). Going from
(iii) to (ii) is the same argument in reverse.

• (ii) and (iii)⇒ (i) By the linearity of expectation and the fact g(x) = max(g(x), 0)−
|min(g(x), 0))|, its sufficient to prove (i) for nonnegative g. We can approximate
g by gl

n(x) = 2−nb2ng(x)c and gu
n(x) = 2−nd2ng(x)e. Each of these uniformly

approximates g so, for example, |g− gl
n| ≤ 2−n. Furthermore we can write

gl
n(x) =

∞

∑
k=1

2−n1g(x)≥k2−n(x) and gu
n(x) =

∞

∑
k=0

2−n1g(x)>k2−n(x) (206)

Since g is bounded, only finitely many of the terms in each of the above sums is
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non-zero. Therefore

lim sup
n→∞

E g(Xn) ≤ lim sup
n→∞

E(2−m + gl
m(Xn))

= 2−m +
∞

∑
k=0

2−m lim sup
n→∞

Pr(Xn ∈ g−1([k2−m, ∞)))

≤ 2−m +
∞

∑
k=0

2−m Pr(X ∈ g−1([k2−m, ∞)))

= 2−m + E gl
m(X)

≤ 2−m + E g(X)

(207)

Let m → ∞ to get lim supn→∞ E g(Xn) ≤ E g(X). By a similar argument using gu
n

we find lim infn→∞ E g(Xn) ≥ E g(X). Hence the limit exists and equals E g(X)

• (ii) and (iii) ⇒ (iv) First note that by assumption Pr(X ∈ int E) = Pr(X ∈ cl E) =
Pr(X ∈ E). By (ii)

lim inf Pr(Xn ∈ E) ≥ lim inf Pr(Xn ∈ int E) ≥ Pr(X ∈ int E) = Pr(X ∈ E) (208)

And by (iii)

lim sup Pr(Xn ∈ E) ≤ lim sup Pr(Xn ∈ cl E) ≤ Pr(X ∈ cl E) = Pr(X ∈ E) (209)

This shows that lim sup Pr(Xn ∈ E) = lim inf Pr(Xn ∈ E) so the limit exists and
equals Pr(X ∈ E)

• (iv)⇒ (ii) Let Kε = {x : d(x, K) ≤ ε}. The sets ∂Kε = {x : d(x, K) = ε} are disjoint
for different values of ε. Therefore at most countably many have Pr(∂Kε) > 0 (for
example, at most n have Pr(∂Kε) ≥ 1/n). Hence we may find a sequence εn ↓ 0
such that Pr(∂Kεn) = 0. Then we have

lim sup
n→∞

Pr(Xn ∈ K) ≤ lim sup
n→∞

Pr(Xn ∈ Kεm) = Pr(X ∈ Kεm) (210)

Since the Kεm are nested and K = ∩∞
m=1Kεm , taking the limit m→ ∞ we have

lim sup
n→∞

Pr(Xn ∈ K) ≤ Pr(X ∈ K) (211)

�
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4.9 (DeMoivre-Laplace theorem) Let X be a Bernoulli random variable taking values
in {0, 1} with Pr(X = 0) = Pr(X = 1) = 1/2. Thus X has mean 1/2 and variance 1/4.
Let X1, X2, . . . be iid copies of X and write Sn := X1 + · · ·+ Xn.

i Show that Sn takes values in {0, . . . , n} with Pr(Sn = i) = 2−n(n
i ) (this is an example

of a binomial distribution)

ii Assume Stirling’s formula

n! = (1 + o(1))
√

2πnnne−n (212)

where o(1) is a function of n that goes to zero as n → ∞. Without using the central
limit theorem show that

Pr(a ≤ 2
√

n(
Sn

n
− 1

2
) ≤ b)→ 1√

2π

∫ b

a
e−x2/2 dx (213)

(i) We have Sn = i iff exactly i of the n variables Xk are equal to 1 and n− i are equal
to 0. Any particular vector of (X1, . . . , Xn) = (x1, . . . , xn) has probability 2−n. Of all
the vectors, (n

i ) have exactly i entries equal to 1, so Pr(Sn = i) = 2−n(n
i )

(ii) Using Stirling’s approximation, with n = k + k′

2−n
(

n
k

)
= 2−n

√
2πnnne−n

√
2πkkke−k

√
2πk′k′k

′
e−k′

=
1√
2π

exp(−n log 2 + (log n− log k− log k′)/2)×

exp(−n log n− k log k− k′ log k′)

(214)

Now when k = 1
2(n + a

√
n) then k′ = 1

2(n− a
√

n) and

log k = log
n
2
+

a√
n
− a2

2n
+ O(

1
n3/2 )

log k′ = log
n
2
− a√

n
− a2

2n
+ O(

1
n3/2 )

(215)

Hence our expressions have enormous amounts of cancelation, and after a bit of
algebra we find

1
2
(log n− log k− log k′) = log

2√
n
+ O(

1
n
) (216)

and
n log n− k log k− k′ log k′ = n log 2− 2a2 + O(

1√
n
) (217)

By considering that 1 = ∆k =
√

n
2 ∆a, we can consider the factor 2√

n to be ∆a, pulling
this together equation (214) becomes

2−n
(

n
k

)
= (1 + o(1))

1√
2π

e−a2/2∆a (218)
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So summing over ka = b1
2(n + a

√
n)c to kb = b1

2(n + b
√

n)c, we get a Riemann sum
which converges to the desired integral

kb

∑
k=ka

2−n
(

n
k

)
= o(1) +

kb

∑
k=ka

1√
2π

e2n(k/n−1/2)2 2√
n
→
∫ b

a

exp(u2/2) du√
2π

(219)

�

4.10 Let X1, X2, . . . , Y1, Y2, . . . be sequences of real random variables and let X, Y be
further real random variables.

(i) If X is deterministic, show that Xn converges in distribution to X if and only if Xn
converges in probability to X

(ii) Suppose that Xn is independent of Yn for each n and X is independent of Y. Show
that Xn + iYn converges in distribution to X + iY if and only if Xn converges in
distribution to X and Yn converges in distribution to Y. What happens if indepen-
dence is dropped? (hint: prop 4 or Stone-Weierstrass)

(iii) If Xn converges in distribtion to X show that for every ε > 0 there exists K > 0
such that Pr(|Xn| > K) < ε for all sufficiently large n. (That is to say, Xn is a tight
sequnces of random variables.)

(iv) Show that Xn converges in distribution to X if and only if after extending the prob-
ability space model if necessary, one can find copies Z1, Z2, . . . and Z of X1, X2, . . .
and X respectively such that Zn converges almost surely to Z. (Hint: Skorokhod
representation)

(v) If X1, X2, . . . converges in distribution to X and F : R → R is continuous, show
that F(X1), F(X2), . . . converges in distribution to F(X). Generalize this claim to
the case when X takes values in an arbitrary locally compact Hausdorff space.

(vi) (Slutsky’s theorem) If Xn converges in distribution to X and Yn converges in prob-
ability to a deterministic limit Y, show that Xn + Yn converges in distribution to
X + Y and XnYn converges in distribution to XY. (Use (iv) or (iii) to control some
error terms). This statement combines well with (i). What happens if Y is not as-
sumed to be deterministic?

(vii) (Fatou lemma) If G : R→ [0, ∞) is continuous and Xn converges in distribution to
X show that

lim inf
n→∞

E G(Xn) ≥ E G(X) (220)

(viii) (Bounded convergence) If G : R → R is continuous and bounded and Xn con-
verges in distribution to X show that limn→∞ E G(Xn) = E G(X).

(ix) (Dominated convergence) If Xn converges in distribution to X and there is an
absolutely integrable Y such that |Xn| ≤ Y almost surely for all n show that
limn→∞ E Xn = E X
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(i) Let X = x a constant. The distribution function FX has one discontinity at x and
other wise is constant and equal to 0 for t < x and constant and equal to 1 for
t > x. Hence, for any ε > 0 the points x + ε and x− ε are points of continuity of the
distribution FX, and by proposition 4,

Pr(Xn ≤ x− ε) = FXn(x− ε)→ FX(x− ε) = 0 (221)

Similarly
Pr(Xn ≤ x + ε) = FXn(x + ε)→ FX(x + ε) = 1 (222)

Hence

lim
n→∞

Pr(|Xn − x| > ε) ≤ lim
n→∞

Pr(Xn ≤ x− ε) + lim
n→∞

Pr(Xn > x + ε) = 0 (223)

This shows that Xn → X in probability.

(ii) TODO

(iii) Note that if Pr(|X| > K) < ε, then for any K′ > K its also the case that Pr(|X| >
K′) < ε. Take any sequence εn > 0 such that εn ↓ 0. Since X has at most countably
many points of discontinuity, for each εn we may find a Kεn with Pr(|X| > Kεn) < εn
such that ±Kεn is not a point of discontinuity for FX. For any ε > 0 we can find
εn < ε, so we may associate Kε = Kεn which has the property ±Kε are not points of
discontinuity.

Thus for ε > 0, by propsition 4, Pr(Xn ≤ −Kε)→ Pr(X ≤ −Kε) and Pr(X ≥ Kε)→
Pr(X ≥ Kε). Hence for n large enough, the left and right tail probabilities for Xn are
within ε of the corresponding probabilities for X.

Pr(|Xn| > Kε) ≤ Pr(|X| > Kε) + 2ε = 3ε (224)

This shows that Xn is tight.

(iv) Let ω ∼ U(0, 1) have a uniform distribution on [0, 1]. Then by Skorokhod’s construc-
tion define Zn = sup{z ∈ R : FXn(z) < ω} and Z = sup{z ∈ R : FX(z) < ω} have
distributions the same distributions as the corresponding X variables, so Zn ∼ Xn
and Z ∼ X. Suppose ω = FX(z) and also that z is a point of continuity for FX. Then
Z = z and also, by proposition 4, Zn → z. TODO finish this

(v) We’ll just do the generic case since the argument is identical. Let F : R→ S where S
is a locally compact Hausdorff space. Let G : S → R be a continuous function with
compact support. Note that G ◦ F : R→ R is continuous with compact support, and
hence E G(F(Xn))→ E G(F(X)). Since G is arbitrary, this shows that F(Xn)→ F(X)
in distribution.

(vi) By (ii) we can find a probability space where Zn ∼ Xn, and Z ∼ Z and Zn → Z
in probability. By (i) we know that Yn → Y in probability. By 3.2(vii) this means
that for any continuous function F : R×R → R we have F(Zn, Yn) → F(Z, Y) in
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probability. Hence F(Zn, Yn) → F(Z, Y) converges in distribution. Let F(x, y) =
x + y or F(x, y) = xy to prove the theorem.

I guess I’m surprised that one of these problems isn’t to show that convergence in
probability implies convergence in distribution. Here’s a short proof. Suppose Xn →
X in probability. For continuous g we have g(Xn) → g(X) in probability. Any
compactly supported g is bounded so by 3.2(ix) we have E g(Xn) → E g(X). This
shows Xn → X in distribution.

(vii) Take Hm : [0, ∞) → [0, ∞) to be a sequence of continuous compactly supported
functions which satisfy Hm(x) ≤ x everywhere and Hn(x) = x on [0, m]. We’ve
constructed the Hm to truncate the extreme values of F but to converge pointwise to
the identity. Then Hn ◦ G is continuous and compactly supported and hence

lim inf
n→∞

E G(Xn) ≥ lim inf
n→∞

E Hm(G(Xn)) = E Hm(G(X)) (225)

By Fatou’s lemma lim infm→∞ E Hm(G(X)) ≥ E G(X). Combining these statements
we get the desired result.

(viii) By the linearity of expectation, and by considering G = G+ − G− where G+ =
max(G, 0) and G− = −min(G, 0), it sufficies to prove the statement when G is non-
negative. Let G(x) ≤ M. Then applying (vii) to M− G

lim inf
n

E(M− G(Xn)) ≥ E(M− G(X)) ⇒ lim sup G(Xn) ≤ E G(X) (226)

Combining this with another application of (vii) we get

E G(X) ≥ lim sup
n

E G(Xn) ≥ lim inf
n

E G(Xn) ≥ G(X) (227)

Hence all the expressions are equal, which shows the limit exists and has the value
E G(X)

(ix) Note that Z−n = Y − Xn converges in distribution to Y − X and Z+
n = Y + Xn con-

verges in distribution to Y + X. Since |Xn| ≤ Y both Z+
n and Z−n are non-negative,

so by Fatou’s lemma

lim inf
n

E(Y− Xn) ≥ E(Y− X) ⇒ lim inf
n

E(Y + Xn) ≥ E(Y + X) (228)

Using linearity and the fact E Y is a constant, this shows lim supn E Xn ≤ E X ≤
lim infn E Xn. Since the opposite inequality is trivial, the lim sup and lim inf are equal
and equal to E X.

�

4.13 (Probabilistic interpretation of convolution) Let f , g : R → [0,+∞] be measur-
able functions with

∫
R

f (x) dx =
∫

R
g(x) dx = 1. Define the convolution f ∗ g of f and

g to be

f ∗ g :=
∫

R
f (y)g(x− y) dy (229)

Show that if X, Y are independent real random variables with probability density func-
tions f , g respectively, then X + Y has probability density function f ∗ g.
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Let S = X + Y and consider E h(S) for any continuous compactly supported function h.
This is given by

E h(S) =
∫

R

∫
R

h(x + y) f (x)g(y) dx dy (230)

Making a change of variables s = x + y and t = y so that ∂(s,t)
∂(x,y) =

∣∣∣∣1 1
0 1

∣∣∣∣ = 1 we get

E h(S) =
∫

R

∫
R

h(s) f (s− t)g(t) ds dt =
∫

R
h(s) f ∗ g(s) ds (231)

Since h is arbitrary, this shows that f ∗ g is the pdf for S. �

4.14 (Lindeberg central limit theorem) Let kn be a sequence of natural numbers going
to infinity in n. For each natural number n let X1,n, . . . , Xkn,n be jointly independent
real random variables of mean zero and finite variance. (We do not require the random
variables (X1,n, . . . , Xkn,n) to be jointly independent in n or even to be modeled by a
common probability space). Let σn be defined by

σ2
n :=

kn

∑
i=1

Var(Xi,n) (232)

and assume that σn > 0 for all n.

(i) If one assumes the Lindeberg condition that

1
σ2

n

kn

∑
i=1

E(|X2
i.n1|Xi,n|>εσn |)→ 0 (233)

as n→ ∞ for any ε > 0 then show that the random variables X1,n+···+Xkn ,n
σn

converge
in distribution to a random variable with the normal distribution N(0, 1).

(ii) Show that the Lindeberg condition implies the Feller condition

1
σ2

n
max

1≤i≤kn
E|Xi,n|2 → 0 (234)

as n→ ∞

Let σ2
i,n = E X2

i,n and σ2
n = ∑kn

i=1 σ2
i,n. Without loss of generality, scaling each Xi,n by σn,

we may assume that σn = 1 for all n. By Stone-Weirestrass, we can approximate arbitrary
continuous compactly supported G pointwise with a smooth compactly supported G.
Thus we may assume all derivatives of G exist and are bounded.

We’re going to use the truncation method, so let µi,n := E Xi,n1|Xi,n|≤ε and define

X≤i,n := Xi,n1|Xi,n|≤ε − µi,n X>
i,n := Xi,n1|Xi,n|>ε + µi,n (235)
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Note that Xi,n = X≤i,n + X>
i,n. First let’s bound the error caused by trunction. Define

Ti,n := X1,n + · · ·+ Xi,n + X≤i+1,n + . . . X≤kn,n (236)

Then since Ti+1 = Ti + X>
i,n, taking the Taylor expansion with remainder to the second

order

|E G(Ti+1)− E G(Ti)| =
∣∣∣∣E G′(Si)E X>

i,n +
1
2

G′′(ξ(Si, X>
i,n))E(X>

i,n)
2
∣∣∣∣

≤ sup |G′′|E(X>
i,n)

2
(237)

Considering the telescoping sum

|E G(X1,n + . . . Xkn,n)− E G(X≤1,n + · · ·+ X≤1,n)| ≤
kn−1

∑
i=0
|E G(Ti+1)− E G(Ti)| (238)

By the above, this is bound by O(∑kn
i=1 E(X>

i,n)
2) (where the implied constant depends on

the supremum of G′′). Now E X>
i,n

2 ≤ E X2
i,n1|Xi,n|>ε since the variance of a random vari-

able is bound by the second moment. However, ∑i E X2
i,n1|Xi,n|>ε → 0 by the Lindeberg

condition, which shows the error introduced by truncation tends to zero.
Let Ni,n for each i = 1, . . . , kn be a sequence of mutually independent random variables

with distribution N(0, 1) which are also mutually independent of all the Xi,n. Working
now with the truncated series, define

Zi,n := X≤1,n + · · ·+ X≤i−1,n + σi+1,nNi+1,n + · · ·+ σkn,nNkn,σ (239)

Suppressing the indices i and n for a moment, taking the Taylor expasion to the third
order we get a bound

|E G(Z + X≤)− E G(Z + σN)| =
∣∣E G′(Z)(E X≤ − E σN)

+
1
2

E G′′(Z)(E X≤2 − σ2 E N2)

+
1
6
(E G′′′(ξ1)X≤3 − E G′′′(ξ2)N3)

∣∣
≤C|E X≤2 − σ2|+ C′ E |X≤|3 + C′′σ3

(240)

The constants here depend only on G and not on the X’s or N’s. Using the same type of
telescoping sum as above, considering that Z0,n = ∑i σi,nNi,n and Zkn,n = ∑i X≤i,n we get a
bound ∣∣∣∣∣E G

(
∑

i
X≤i,n

)
− E G

(
∑

i
σi,nNi,n

)∣∣∣∣∣ ≤
C ∑

i

∣∣∣E X≤i,n
2 − σ2

i,n

∣∣∣+ C′∑
i

E |X≤i,n|
3 + C′′∑

i
σ3

i,n (241)
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We’ll show that each of these three terms tends to 0 or can be made arbitrarily small.
First, again supressing subscripts, note that

E X≤2
= E X21|X|≤ε − µ2 E X>2

= E X21|X|>ε − µ2 (242)

Hence,

E X≤2
+ E X>2

= σ2 − 2µ2 ⇒ |σ2 − E X≤2| ≤ 2µ2 + E X>2 (243)

By Cauchy-Schwarz µ2 ≤ E |X1|X|>ε| ≤ E E X21|X|>ε. So we have the bound

∑
i

∣∣∣σ2
i,n − E X≤2

∣∣∣ ≤ 3 ∑
i

E X2
i,n1|Xi.n|>ε (244)

The right hand side tends to 0 by assumption– this is the same as the Lindeberg condition.
Next, note that since |µ| = |E X1|X|≤ε| ≤ ε we also have

|X≤| ≤ |X1|X|≤ε|+ |µ| ≤ 2ε (245)

and hence
∑

i
E |X≤i,n|

3 ≤ 2ε ∑
i

E |X≤i,n|
2 ≤ 2ε ∑

i
σ2

i,n = 2ε (246)

This can be made arbitrarily small by choosing the truncation parameter.
Finally

∑
i

σ3
i,n ≤ ( max

i=1,...,kn
σi,k)∑

i
σ2

i,n = max
i=1,...,kn

σi,k (247)

Thus we can prove this term tends to 0 if we can prove the Feller condition. To show this,
first observe

E X2 = E X21|X|<ε + E X21|X|≥ε ≤ ε2 + E X21|X|≥ε (248)

Majorizing E X2
i,n1|Xi,n|≥ε by the sum of all such terms we get

max
i

σ2
i,n ≤ ε2 +

kn

∑
i=1

E X2
i,n1|Xi,n|≥ε < 2ε2 (249)

for any n large enough that the Lindeberg condition implies the sum is less than ε2. Since
ε is arbitrary, this shows that maxi σ2

i,n → 0 as n→ ∞. �
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4.15 (Weak Barry-Esséen theorem) Let X1, . . . , Xn be iid copies of a real random vari-
able X of mean zero, unit variance and finite third moment.

(i) Show that

E G(
X1 + · · ·+ Xn√

n
) = E G(N) + O(n−1/2 E|X|3 sup

x∈R

|G′′′(X)|) (250)

(ii) Show that

Pr(
X1 + · · ·+ Xn√

n
≤ 1) = Pr(N ≤ t) + O(n−1/2 E|X|3)1/4 (251)

for any t ∈ R with the implied constant absolute

(i) Extend the probability space by adding iidN (0, 1) random variables N1, N2, . . . and
N. Let Sn,k = X1 + · · ·+ Xk + Nk+1 + · · ·+ Nn. Let Zk = Sn,k − Xk = Sn,k−1 − Nk.
Using the Taylor expansion for G we have

G(n−1/2Sn,k)− G(n−1/2Sn,k−1) =G(Zk)− G(Zk)+

1√
n

G′(Zk)(Xk − Nk)+

1
2n

G′′(Zk)(X2
k − N2

k )+

1
6n3/2 (G

′′′(a)X3
k − G′′′(b)N3

k )

(252)

Here a ∈ [0, n−1/2 ∑i Sn,k] is the value for the remainder term, which depends on the
value Sn,k, and similarly with b. Now take expectations of both sides conditional on
the values of X1, . . . , Xk−1 and Nk+1, . . . , Nn. The first line is trivially 0, the second is
zero by independence and because E Xk = E Nk = 0. The third line by independence
and because 0 because Var Xk = Var Nk = 1. Thus, using the tower law to take
expectations of the conditional expectations, we can bound

|E G(n−1/2Sn,k)− E G(n−1/2Sn,k−1)| ≤
1
6

n−3/2 sup|G′′′(x)|(E|Xk|3 + E|Nk|3) (253)

Note that E|Xk|3 ≥ (Var Xk)
3/2 = 1 and E|Nk|3 = 2

√
2/π is just a constant, so

1
6 E|Xk|3 + E|Nk|3 ≤ 1

6

(
1 +

√
8
π

)
E|Xk|3 for some absolute constant c. Summing

over the n terms |E G(n−1/2Sn,k)−E G(n−1/2Sn,k−1)|, and noting that n−1/2 ∑n
i=1 Ni ∼

N ∣∣∣∣∣E G

(
n−1/2

n

∑
i=1

Xi

)
− E G(N)

∣∣∣∣∣ ≤ O(n−1/2 sup|G′′′(x)|E|X|3) (254)

(ii) Let φ be a non-negative, C∞ “bump function” with support on [−1, 1] which satisfies∫ 1
−1 φ(x) dx = 1. For λ > 0 we can scale φλ(x) = λ−1φ(λ−1x) to get a narrower
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bump function supported on [−λ, λ] where all the other properties (in particular,
the total integral) are the same.

Then we can define an approximate step function Gλ,t(x) =
∫ x
−∞

1
λ φ
( x−t

λ

)
dx. Note

that Gλ,t(x) = 0 for x ≤ t− λ and Gλ,t(x) = 1 for x ≥ t + λ. Also Gλ,t is increasing
and Gλ,t ∈ C∞ with |G′′′λ,t(x)| ≤ c/λ3 for some constant c.

Thus since 1s≤t ≤ Gt,t+λ(x) ≤ 1x≤t+2λ,

Pr(n−1/2Sn ≤ t) ≤ E Gλ,t+λ(n−1/2Sn)

≤ E Gλ,t+λ(N) + error
≤ Pr(N ≤ t + 2λ) + error

(255)

Here the error term O(E|X|3/
√

n). By a similar comparison

Pr(N ≤ t− 2λ) ≤ Pr(n−1/2Sn ≤ t) + error (256)

Now Pr(N ≤ t + 2λ) − Pr(N ≤ t) ≤ 2λ/
√

2pi (since the pdf of a normal distri-
bution is peaked at 1/

√
2π). Similarly Pr(N ≤ t) − Pr(N ≤ t − 2λ) ≤ 2λ/

√
2π.

Therefore

|Pr(n−1/2Sn ≤ t)− Pr(N ≤ t)| ≤
√

2
π

λ + c
E|X|3√

nλ3 (257)

Here the constant c is absolute and doesn’t depend on any of the parameters. The λ
which minimizes aλ + b/λ3 is λ = (3b/a)1/4 with minimum value(

3
1
4 + 3−

3
4

)
a

3
4 b

1
4 (258)

This gives us an error term O((n−1/2 E|X|3)1/4)
�

4.17 (Kolmogorov three-series theorem, converse direction) Let X1, X2, . . . be a se-
quence of jointly indepdendent real random variables with the property that the series
∑∞

n=1 Xn is almost surely convergent (i.e., the partial sums are almost surely convergent)
and let A > 0

(i) Show that ∑∞
n=1 Pr(|Xn| > A) is finite

(ii) Show that ∑∞
n=1 Var(Xn1|Xn|≤A) is finite

(iii) Show that the series ∑∞
n=1 E Xn1|Xn|≤A is convergent

(i) By the second Borel-Cantelli and the independence of the Xn, if ∑∞
n=1 Pr(|Xn| > A)

is infinite than almost surely infinitely many of the events |Xn| > A occur. However,
if infinitely many |Xn| > A, then either infinitely many Xn > A or infinitely many
Xn < −A. Thus either lim supn Xn ≤ A or lim infn Xn ≤ −A. Either way this
contradicts the fact that lim Xn → 0 whenever ∑n Xn converges.
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(ii) Let Yi,n = Xi1|Xi|≤A − E Xi1|Xi|≤A. Note that Var Yi,n = Var Xi1|Xi|≤A. Assume that
σ2

n = ∑n
i=1 Var Yi,n → ∞ as n → ∞. Note that Yi,n bounded by 2A, since each term

in its definition is bounded by A from truncation. Choosing n large enough that
εσn > 2A, we must have Yi,n1|Yi,n|>εσn = 0 for all i. The Lindeberg condition follows

directly from this observation. Therefore ∑kn
i=1 Yi,n/σn converges in distribution to

N(0, 1).

On the other hand, note that L = limn→∞ ∑n
i=1(Xi1|Xi|<A − µi)//σn is independent

of the value of any finite collection of the Xi since the denominator tends to infinity.
Since the Xi are mutually independent, Kolmogorov’s 0-1 law implies that L is a
constant, contradicting the fact it has a N(0, 1) distribution.

Therefore σ2
n must be bounded as n → ∞. Since the quantity is increasing, it must

converge. Hence ∑∞
i Var(X1|X|≤A) is finite.

(iii) Let Yn = Xn1|Xn|≤A − E Xn1|Xn|≤A. Note E Yn = 0, the Yn are jointly indepen-
dent, and ∑∞

n=1 E Y2
n = ∑∞

n=1 Var(Xn1|Xn|≤A), which converges almost surely by
the (ii). Therefore by theorem 3.26 ∑∞

n=1 Yn converges almost surely. Futhermore
∑∞

n=1 Xn1|Xn|≤A converges almost surely, since by (i) and Borel-Cantelli, almost surely
it omits a finite number of terms. Note that

N

∑
n=1

E Xn1|Xn|≤A =
N

∑
n=1

Xn1|Xn|≤A −
N

∑
n=1

Yn (259)

The right hand side converges on the intersection of two almost sure events (namely,
that each of the terms converges), thus the left hand side converges almost surely.

�

4.19 Show that the normal N(µ, σ2) has characteristic function φ(t) = eitµe−σ2t2/2

First we take the case X ∼ N (0, 1) For any bounded C1 function f , when X ∼ N (0, 1) we
have E f ′(X) = E XF(X). This follows from integration by parts

E f ′(X) =
1√
2π

∫
R

f ′(x)e−x2/2 dx

=
f (x)e−x2/2
√

2π

∣∣∣∣∣
∞

−∞

− 1√
2π

∫
R

f (x)
(
−xex2/2

)
dx

= E X f (X)

(260)

Therfore, for f (x) = eitx we get

d
dt

φX(t) = i E XeitX = i2 E teitX = −tφX(t) (261)

The solution to this differential equation is φX(t) = Ce−t2/2 for some constant C. Since
φX(0) = 1 the constant C = 1.
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For the general case X = µ + σN for some N ∼ N (0, 1). Hence

φX(t) = E eit(µ+σN) = eiµtφN(σt) = eiµt−σ2t2/2 (262)

�

4.20 Let λ > 0 and let X be a Poisson random variable with intensity λ, thus X
takes values in the non-negative integers with Pr(X = k) = e−λ λk

k! . Show that
φX(t) = exp(λ(eit − 1))

E eitX =
∞

∑
n=0

eitn e−λλn

n!
= e−λ

∞

∑
n=0

(eitλ)n

n!
= exp(−λ) exp(eitλ) = exp(λ(eit − 1)) (263)

�

4.21 Let X be uniformly distributed in some interval [a, b] show that φX(t) = eitb−eita

it(b−a) for
all non-zero t.

E eitX =
∫ b

a
eitx dx

b− a
=

eitb − eitb

it(b− a)
(264)

�

4.22 Let x0 ∈ R and γ > 0 and let X be a Cauchy random variable with parameters
x0, γ which means that X is a real random variable with probability density function

γ
π((x−x0)2+γ2)

. Show that φX(t) = eix0te−γ|t| for all t ∈ R

See Williams 16.3 �

4.23 (Riemann-Lebesgue lemma) Show that if X is a real random variable that has an
absolutely integrable probability density function f then φX(t) → 0 as t → ∞. Note the
claim fails if X doesn’t have a probability density function.

Given ε > 0, since continuous compactly supported functions are dense in L1 so we can
find a function q ∈ C0 such that

∫
R
|p(x)− q(x)| dx < ε. Since q is compactly supported,

there is some N such that supp g ⊂ [−N, N]. Since q is uniformly continuous, we can find
a step function s(x) = ∑n

i=k ck1[ak,bk)
which uniformly approximates q pointwise. That is

for all x ∈ R, |q(x)− s(x)| < ε/2N. Then we have
∫

R
|g(x)− s(x)| dx < 2N(ε/2N) = ε.

Hence ∣∣∣∣∫
R

eixt p(x) dx−
∫

R
eixts(x) dx

∣∣∣∣ ≤ ∫
R
|p(x)− s(x)| ≤ 2ε (265)

This shows we can find a step function s such that | f̂ (t)− ŝ(t)| ≤ ε uniformly in t.

58



For any single step 1[a,b)∫
R

eitx1[a,b)(x) =
∫ b

a
eitx =

eibt − eiat

it
(266)

In particular note that |1̂[a,b)| ≤ 2t−1. Therefore for a step function s(x) = ∑n
k=1 ck1[ak,bk)

we have

|ŝ(t)| ≤ t−1
n

∑
k=1
|ck| (267)

Therefore |ŝ(t)| → 0 as |t| → ∞. Since |φX(t) − ŝ(t)| ≤ ε uniformly, this shows that
φX(t)→ 0 as |t| → ∞. �

4.24 Show the characteristic function φX of a real random variable is in fact uniformly
continuous on its domain.

|φ(t + δ)− φ(t)| = |E eitX(eiδX − 1)| ≤ E|eiδX − 1| (268)

Choose N so large that Pr(|X| > N) < ε. Since eiNx is continuous at zero and e0 = 1, we
can choose δ small enough such that |eiδX − 1| < ε whenever |X| ≤ N. To estimate the
tail note that |eiδX − 1| ≤ 2, so

E|X|>N|eiδX − 1| ≤ 2 Pr(|X| > N) ≤ 2ε (269)

Hence, for δ small enough independent of t we have

|φ(t + δ)− φ(t)| ≤ 3ε (270)

This shows that φX(t) is uniformly continuous. �

4.25 Let X be a real random variable with finite kth moment for some k ≥ 1. Show that
φX is k times continuously differentiable with

dj

dtj φX(t) = ij E X jeitX (271)

for all 0 ≤ j ≤ k. Conclude in particular that the partial Taylor expansion

φX(t) =
k

∑
j=0

(it)j

j!
E X j + o(|t|k) (272)

where o(|t|k) is a quantity that goes to zero as t→ 0 times |t|k.
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We will justify differentiating under the integral sign. First consider the finite difference

φX(th)− φX(t)
h

=
∫

R
eitx eihx − 1

h
dm (273)

where m is the measure on R which corresponds to the distribution of X. Note there is a
bound

|eθi − 1| ≤ |θ| (274)

since |eθi − 1| is the distance of the chord on the unit circle from 1 to eiθ and θ is the arc
length from 1 to eiθ. Therefore the integrand is dominated by |hx|/h = |x|. By assumption
E|X| < ∞, so by dominated convergence

lim
h→∞

φX(th)− φX(t)
h

=
∫

R
eitx deitx

dt

∣∣∣∣
t=0

dm =
∫

R
eitxix dm = i E eitXX (275)

To compute dk

dtk φX(t), proceed by induction using the measure xk−1 dm instead of dm.
Dominated convergence still applies since E|X|k < ∞ by assumption, so we can differen-
tiate under the integral sign.

dk

dtk φX(t) =
d
dt
(ik−1 E Xk−1eitX) = ik−1 E

(
Xk−1 d

dt
eitX
)
= ik E XkeitX (276)

In particular note φ
(k)
X (0) = ik E Xk so using Taylor’s theorem with remainder we get

the expansion in the problem statement. �

4.26 Let X be a real random variable and assume that it is subgaussian in the sense that
there exist constants C, c ≥ 0 such that

Pr(|X| ≥ t) ≤ Ce−ct2
(277)

for all t ∈ R. (A bounded random variable is subgaussian, as is any Gaussian random
variable). In this case, rigorously establish

φX(t) =
∞

∑
k=0

(it)k

k!
E Xk (278)

and show that the series converges locally uniformly in t

(Sketch) Use the formula E|X|k =
∫ ∞

0 ktk−1 Pr(|X| ≤ t) dt to get an upper bound for the
moments of X using the subgaussian bound. We find that E|X|k ≤ Γ(k/2) approximately.
Since Γ(k/2)/k! ≤ 1/(k/2)!, the Taylor series is convergent for all x. This is because for
k > k0 = 4x2, the terms tk/(k/2)! ≤ A2k02−k, and, excluding a finite number of terms,
we can dominate the tail terms by a geometric series. In fact if we take k0 = 8x2 then for
all |t′| ≤

√
2|t| we can dominate the terms by a geometric series A′2k02−k uniformly. This

shows for every t, the Taylor series converges uniformly on a compact set containing t,
which is the definition of local uniform convergence. �
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4.29 (Levy’s continuity theorem, full version) Let Xn be a sequence of real valued ran-
dom variables. Suppose that φXn converges pointwise to a limit φ. Show the following
are equivalent.

(i) φ is continuous at 0

(ii) Xn is a tight sequence (as in Exercise 4.10(iii))

(iii) φ is the characteristic function of a real valued random variable X (possibly after
extending the sample space)

(iv) Xn converges in distribution to some real valued random variable X (possibly after
extending the sample space)

• (i)⇒ (ii) Consider the average value of φXn and φ on a small interval (−δ, δ)

An(δ) =
1
2δ

∫ δ

−δ
φXn(t) dt A(δ) =

1
2δ

∫ δ

−δ
φ(t) dt (279)

First, since |φXn | ≤ 1 for all n, by bounded convergence we have An(δ) → A(δ) as
n→ ∞. Furthermore, by the continuity of φ at 0, since φ(0) = E e0 = 1, by choosing
δ small enough |1− A(δ)| ≤ ε for any ε > 0.

Now these integrals (279) can be regarded as (2δ)−1
∫

R
Ĝδ(t)φXn(t) dt where Ĝδ(t) =

1|t|≤δ(t). The Fourier pair corresponding to Ĝδ satisfies

Gδ(x) =
2 sin(δx)

x
(280)

so by identity (7) in the text, An(δ) = (2δ)−1 E Gδ(Xn). Therefore we can make the
simple estimate

|An(δ)| ≤
∣∣∣∣∫

R

sin(δx)
δx

dµn

∣∣∣∣ ≤ ∣∣∣∣∫|x|<T

sin(δx)
δx

dµn

∣∣∣∣+ ∣∣∣∣∫|x|≥T

sin(δx)
δx

dµn

∣∣∣∣
≤ Pr(|X| < T) +

1
Tδ

Pr(|X| ≥ T)
(281)

Hence

1− An ≥
(

1− 1
Tδ

)
Pr(|Xn| ≥ T) (282)

Choosing T = δ/2 gives

Pr(|Xn| ≥ 2/δ) ≤ 2|1− An| (283)

Now|1− A| ≤ ε for small enough δ. Also for some Nδ, for any n ≥ Nδ we have
|A − An| ≤ ε, so we have Pr(|Xn| ≥ 2/δ) ≤ 4ε, which can be made arbitrarily
small. This shows that Xn is tight.
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• (ii) ⇒ (iii) and (iv): By theorem 11 (Prokhorov’s theorem), there is a subsequence
nj and a random variable X (possibly on an extended probability space from the
X1, X2, . . . ) such that Xnj → X in distribution. By theorem 27, φXnj

→ φX point-
wise. However, φXnj

→ φ pointwise, since φnj is a subsequence of φn and every
subsequence has the same limit. Therefore φ = φX and, by theorem 27 in the other
direction, Xn → X in distribution.

• (iii)⇔ (iv) by Theorem 27.

• (iii)⇒ (i) by exercise 4.24
�

4.31 (Esséen concentration inequality) Let X be a random variable taking values in R.
Then for any r > 0, ε > 0 show that

sup
x0∈R

Pr(|X− x0| ≤ r) ≤ Cεr
∫

t∈R:|t|<ε/r
|φX(t)| dt (284)

for some constant Cε depending only on ε. The left hand side (as well as higher dimen-
sional analogues) is known as the small ball probability of X at radius r.

First note that if we can establish the inequality for x0 = 0 we have established it for all
x0 since φX+x0(t) = eix0φX(t), and the right side is unchanged under this transformation.
Essentially this inequality follows directly from the scaling identity ˆH(t/r) = rH(rx) and
E H(X) =

∫
R

Ĥ(t)φX(t) dt for a well-chosen G. We want Ĥ to be compactly supported
and H to be nonnegative. One choice is H = G2 and Ĥ = Ĝ ∗ Ĝ where G is the function
used in problem 4.29(i). Scaling t and the function, we can write Ĥ(t) = (1− |t|)+ and
H(t) = 2 sin2(x/2)/x2 = 2(1− cos x)/x2. For ε ∈ (0, 2π), since H is peaked around 0
and non-negative,and since Ĥ(t) ≤ 1{|u|≤1}(t)

H(ε)Pr(|X| ≤ ε) ≤ E H(X) =
∫

R
Ĥ(t)φX(t) dt ≤

∫
|t|≤1
|φX(t)| dt (285)

If we scale X by ε/r and set Cε = 1/εH(ε) this becomes the desired relation

Pr(|X| ≤ r) ≤ Cεr
∫
|t|≤ε/r

|φ(t)| dt (286)

�
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4.32 (Fourier identities) Let X, Y be independent real random variables. Then

φX+Y(t) = φX(t)φY(t) (287)

for all t ∈ V. Also for any scalar c one has

φcX(t) = φX(ct) (288)

and more generally, for any linear transformation T : V → V one has

φTX(t) = φX(T∗t) (289)

For the first identity observe

φX+Y(t) = E eit(X+Y) = E eitXeitY = E eitX E eitY = φX(t)φY(t) (290)

For the second (and I think this is somewhat conventional, what’s the characteristic func-
tion of a complex argument supposed to mean?)

φcX(t) = E ei〈t,cX〉 = E ei〈ct,X〉 (291)

For the third
φcX(t) = E ei〈t,TX〉 = E ei〈T∗t,X〉

�

4.34 (Vector-valued central limit theorem) Let ~X = (X, . . . , Xd) be a random variable
taking values in Rd with finite second moment. Define the covariance matrix Σ(~X) to be
the d× d matrix Σ whose ijth entry is the covariance E(Xi − E(Xi))(Xj − E(Xj)).

(i) Show that the covariance matrix is positive semi-definite real symmetric.

(ii) Conversely, given any positive definite real symmetric d× d matrix Σ and µ ∈ Rd

show that the multivariate normal distribution N(µ, Σ)Rd given by the absolutely
continuous measure

1√
(2π)d det Σ

e−(x−µ)·Σ−1(x−µ)/2 dx (292)

has mean µ and covariance matrix Σ and has a characteristic function

Φ(t) = eiµ·te−t·Σt/2 (293)

How would one define the normal distribution N(µ, Σ)Rd if Σ degenerated to be
merely positive semi-definite instead of positive definite?

(iii) If ~Sn := ~X1 + · · ·+ ~Xn is the sum of n iid copies of ~X show that
~Sn−nµ√

n converges in
distribution to N(0, Σ(X))Rd .
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(i) The symmetry of Σ is evident since

Σij = E(Xi − E Xi)(Xj − E Xj) = E(Xj − E Xj)(Xi − E Xi) = Σji (294)

Now let a1, . . . , ad ∈ R let Y = ∑d
i=1 aiXi. Then

Var Y =
d

∑
i,j=1

aiaj Cov(Xi, Xj) = a · Σa (295)

Since Var Y ≥ 0, this shows Σ is positive semi-definite,

(ii) First consider µ = 0 and diagonal Σ

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
... . . .
0 σ2

d

 (296)

Then consider the absolutely continuous measure for (X1, . . . , Xd) where component
Xi ∼ N (0, σi) and all of the components are independent. Then the pdf is given by(

1√
2πσ1

exp(−x2
1/2σ2

1 )

)
· · ·
(

1√
2πσd

exp(−x2
d/2σ2

d )

)
(297)

which has the form (292) since det Σ = ∏ σ2
i , and Σ−1 = diag(1/σ1, . . . , 1/σd) and

since x · Σ−1x = ∑d
i=1 x2

i /σ2
i .

For this special case, the characteristic function is separable

Φ(t) = E eit·X =
∫

Rd

(
eit1x1−x2

1/2σ2
1

√
2πσ1

)
· · ·
(

eitdxd−x2
d/2σ2

d
√

2πσd

)
= E eit1Xi · · ·E eitdXd

= e−σ2
1 x2

1/2 · · · e−σ2
d x2

d/2

= ex·Σx

(298)

For the general case, note that any positive semidefinite symmetric Σ = U∗DU for
a orthogonal matrix U and a diagonal matrix D, where the entries in D are non-
negative. Here ∗ represents the adjoint (transpose) operator which for orthogonal
U has the property U−1 = U∗. Then let X̃ = (X̃1, . . . , X̃d) be a radom variable
as described above with N (0, D), and let X = UX̃ + µ. Clearly E X = µ and
Cov X = U∗ Cov X̃U = U∗DU = Σ. Since we can write X̃ = U∗(X − µ), the
pdf of X can be written

1
(
√

2π)d det D
e−(U

∗(x−µ))·D−1(U∗(x−µ))/2 (299)
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Note that Σ−1 = UD−1U∗ and det Σ = (det U)−1 det D det U = det D so this expres-
sion is actually the same as (292). Furthermore by 4.32 and the translation identity

ΦU∗X+µ(t) = eiµtΦX(Ut) = eiµte−(U
∗t)·(DUt)/2 = eiµte−t·Σt/2 (300)

From this expression its also clear that ∂Φ
∂ti

∣∣∣
0
= iµi and ∂2Φ

∂ti∂tj

∣∣∣
0
= −Σij, so the entries

in µ and Σ do really correspond to the mean and covariances of X.

(iii) By the multivariate Taylor expansion we can write

Φ~X(t) = 1 + iµt− 1
2

t · Σt + o(|t|2) = eiµt−t·Σt/2+o(|t|2) (301)

Therefore

Φ(~Sn−nµ)/
√

n(t) = ei
√

nµ(Φ~X(t/
√

n))n = exp(−t · Σt/2 + no(n−1)) (302)

The expression converges to exp(−t · Σt/2). By Levy’s continuity theorem, this

means that
~Sn−nµ√

n converges in distribution to the multivariate normal N (0, Σ).
�

4.35 (Complex central limit theorem) Let X be a complex random variable of mean
µ ∈ C whose real and imaginary parts have variance σ2/2 and covariance 0. Let
X1, . . . , Xn ∼ X be iid copies of X. Show that as n → ∞ the normalized sums√

n
σ

(
X1+···+Xn

n − µ
)

converges in distribution to the standard complex gaussian N(0, 1)C

defined as the measure µ on C with

µ(S) :=
1
π

∫
S

e−|z|
2

dz (303)

for Borel sets S ⊂ C where dz the Lebesgue measure on C (identified as R2 in the usual
fashion)

Note that the variance of X is defined such that Var X = σ2 as a complex variable in the
sense

E|X− µ|2 = E(<X− µ1)
2 + E(=X− µ2)

2 =
σ2

2
+

σ2

2
= σ2 (304)

Considering X to be a vector in R2, the covariance is given by

Cov X = Σ =

(
σ2

2 0
0 σ2

2

)
(305)

Exercise 4.34 shows that the pdf of the normalized sums in R2 is given by

1√
(2π)2 · (1/2)2

e−(2x2
1+2x2

2)/2 =
1
π

e−|x|
2

(306)

�
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4.36 Use characteristic functions and the truncation argument to give an alternate proof
of the Lindeberg central limit theorem (Theorem 14)

??? I think this is the same as 4.41, see that solution �

4.38 Show the error terms in theorem 37 are sharp (up to constants) when X is a signed
Bernoulli random variable

Let X = +1 or X = −1 with probability 1/2. Now consider Pr(S2n/
√

2n ≤ 0). By
symmetry, for any k ∈N, we have Pr(S2n = −k) = Pr(S2n = k). Therefore

Pr(S2n/
√

2n ≤ 0) =
1
2
+

1
2

Pr(S2n = 0) = Pr(N ≤ 0) +
1
2

Pr(S2n = 0) (307)

where N ∼ N(0, 1). By Stirling’s approximation n! = O(
√

n(n/e)n) we have

Pr(S2n = 0) =
(

2n
n

)
2−2n = O

(√
2n(2n/e)2n

(
√

n(n/e)n)2 2−2n

)
= O(n−1/2) (308)

This shows, up to a constant, the error in theorem 37 cannot be improved. �

4.39 Let Xn be a sequene of real random variables which converge in distribution to a
real random variable X and let Yn be a sequence of real random variables which con-
verge in distribution to a real random variable Y. Suppose that for each n, Xn and Yn
are independent and suppose also that X and Y are independent. Show that Xn + Yn
converges in distribution to X + Y.

Note that φXn+Yn(t) = φXn(t)φYn(t) by independence. Clearly φXn+Yn(t) → φX(t)φY(t)
pointwise. Also, φX(t)φY(t) is evidently the characteristic function for X + Y, so it must
be that Xn +Yn converges in distribution for X +Y. In fact we can say something stronger.
If we don’t know that X and Y are independent a priori, the continuity of φX(t) and φY(t)
at 0 imply that φX(t)φY(t) is continuous at 0. Therefore there is a random variable Z
such that Xn +Yn converges to Z in distribution. Furthermore, φZ(t) = φX(t)φY(t), so by
inspection the distribution of Z is given by X′ + Y′ where X′ ∼ X and Y′ ∼ Y and X′ and
Y′ are independent. �

4.40 Let X1, X2, . . . be iid copies of an absolutely integrable random variable X of mean
zero.

(i) In this part we assume that X is symmetric which means that X and −X have the
same distribution. Show that for any t > 0 and M > 0

Pr(X1 + · · ·+ Xn ≥ t) ≥ 1
2

Pr(X11|X1|≤M + · · ·+ Xn1|Xn|≤M ≥ t) (309)

(ii) If X is symmetric and X1+···+Xn√
n converges in distribution to a real random variable

Y, show that X has finite variance.

(iii) Generalize (ii) by removing the hypothesis that X is symmetric
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(i) Note that Sn = X1 + · · ·+ Xn can be written Sn = An + Bn where

An = X11|X1|≤M + · · ·+ Xn1|Xn|≤M (310)

Bn = X11|X1|>M + · · ·+ Xn1|Xn|>M (311)

Clearly {Sn ≥ t} ⊃ {An ≥ t, Bn ≥ 0}. Now Bn is a symmetric random variable
since the Xi are symmetric. Consequently, Pr(Bn > 0) = Pr(Bn < 0) and hence
Pr(Bn ≥ 0) ≥ 1

2 .

Furthermore, An and Bn are independent. This is because the Xi’s which contribute
to the value of An are disjoint from the Xi’s which contribute to the value of Bn. In
more detail, given I ⊂ {1, . . . , n}, if we condition |Xi| ≤ M for i ∈ I and |Xi| > M
for i 6∈ I, then An depends only on Xi for i ∈ I and Bn depends only on Xi for i 6∈ I.
So conditionally, An and Bn are independent. However, this same argument applies
for all subsets I ⊂ {1, . . . , n} so An and Bn are unconditionally indepdent.

Therefore

Pr(Sn ≥ t) ≥ Pr(An ≥ t, Bn ≥ 0) = Pr(An ≥ t)Pr(Bn ≥ 0) ≥ 1
2

Pr(An ≥ t) (312)

(ii) For any fixed M Var X1|X|≤M ≤ M2 is finite. By the central limit theorem, An/
√

n→
N (0, σ2) in distribution where σ2 = Var X1|X|≤M. In particular for ε > 0, for large
enough n, if we let N ∼ N (0, 1)

Pr
(X11|X1|≤M + · · ·+ Xn1|Xn|≤M√

n
≥ t
)
≥ Pr

(
N ≥ t

σ

)
− ε (313)

By the monotone convergence theorem, Var X1|X|≤M ↑ Var X as M ↑ ∞, and this
holds even if Var X = ∞. So, if X does not have finite variance, as M → ∞, then
σ → ∞ and, for any fixed t, Pr(N ≥ t/σ) → 1

2 . Thus may choose M and n large
enough so that the expression above is at least 1

4 .

If (X1 + · · ·+ Xn)/
√

n converges to a random variable Y in distribution then, except
for at most countably many t,

Pr
(

X1 + · · ·+ Xn√
n

≥ t
)
→ Pr(Y ≥ t) (314)

Choose t large enough so that Pr(Y ≥ t) ≤ ε and n large enough so that Pr(X1 +
· · ·+ Xn ≥ t

√
n) ≤ 2ε. Then

2ε ≥ Pr(X1 + . . . Xn ≥ t
√

n)

≥ 1
2

Pr(X11|X1|≤M + · · ·+ Xn1|Xn|≤M ≥ t
√

n)

≥ 1
8

(315)

This is a contradiction since we can make ε arbitrarily small with our chose of t, but
this inequality says ε is at least 1

16 .
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(iii) For arbitrary X we can consider X̃ = X − X′ where X′ has the same distribution as
X and is independent. Now −X̃ = X′ − X evidently has the same distribution as
X̃ since its the difference of independent random variables whose distribution is the
same as X. Hence X̃ is symmetric.

Suppose that (X1 + · · · + Xn)/
√

n → Y in distribution for some random variable
Y. Then by exercise 4.39, we have (X̃1 + . . . X̃n)/

√
n → Y − Y′ where Y′ has the

same distribution as Y and is independent of it. By (ii) this implies that X̃ has finite
variance. By direct calculation Var X̃ = Var X + Var X′ = 2 Var X so we conclude
Var X is finite.

�

4.41

(i) If X is a real random variable of mean zero and variance σ2 and t is a real number,
show that

φX(t) = 1 + O(σ2t2) (316)

and that
φX(t) = 1− 1

2
σ2t2 + O(t2 E min(|X|2, t|X|3)) (317)

(ii) Establish the pointwise inequality

|z1 · · · zn − z′1 · · · z′n| ≤
n

∑
i=1
|zi − z′i| (318)

whenever z1, . . . , zn, z′1, . . . , z′n are in the complex disk {z ∈ C : |z| ≤ 1}

(iii) Suppose that for each n, X1,n, . . . , Xn,n are jointly independent real random vari-
ables of mean zero and finite variance obeying the uniform bound

|Xi,n| ≤ εn
√

n (319)

for all i = 1, . . . , n and some εn going to zero as n → ∞, and obeying the variance
bound

n

∑
i=1

Var(Xi,n)→ σ2 (320)

as n → ∞ for some 0 < σ < ∞. If Sn := X1,n + · · ·+ Xn,n use (i) and (ii) to show
that

φSn/
√

n(t)→ e−σ2t2/2 (321)

as n→ ∞ for any given t

(iv) Use (iii) and a truncation argument to give an alternative proof of the Lindeberg
central limit theorem (theorem 14)
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(i) From Taylor’s theorem with remainder

eix =
n

∑
k=0

ik

k!
xk +

in+1

n!

∫ x

0
(x− u)neiu du (322)

This immediately leads to a bound∣∣∣∣∣eix −
n

∑
k=0

ik

k!
xk

∣∣∣∣∣ ≤ |x|n+1

(n + 1)!
(323)

Using this inequality for n− 1 we can get a bound∣∣∣∣∣eix −
n

∑
k=0

ik

k!
xk

∣∣∣∣∣ ≤
∣∣∣∣∣eix −

n−1

∑
k=0

ik

k!
xk

∣∣∣∣∣+ |x|nn!
≤ 2|x|n

n!
(324)

Since by assumption E X = 0 and E X2 = σ2, we have E(1 + itX − 1
2 t2X2) = 1−

1
2 t2σ2. Therefore we can use the above to bound the characteristic function, for an
absolute constant C∣∣∣∣φX(t)− 1 +

1
2

t2σ2
∣∣∣∣ ≤ E C min(t2|X|2, t3|X|3) (325)

(ii) It sufficies to prove the case n = 2 since the general case follows by induction.

z1z2 − z′1z′2 = (z1 − z′1)z2 + (z2 − z′2)z
′
1 (326)

Taking the absolute value of both sides, using the triangle inequality, and noting
|z2| ≤ 1 and |z′1| ≤ 1 we have

|z1z2 − z′1z′2| ≤ |z1 − z′1|+ |z2 − z′2| (327)

(iii) I’m just going to prove the Lindeberg central limit theorem rather than the problem
as stated

(iv) I’m just going to prove the Lindeberg central limit theorem rather than the problem
as stated

Let Sn = X1,n + · · ·+ Xkn,n where E Xi,n = 0 and σ2
i,n = E X2

i,n and ∑kn
i=1 σ2

i,n = 1. (If the
sum of the variances is not one, we can divide every term Xi,n by this quantity to satisfy
the hypothesis of the theorem). We wish to show that for all t∣∣∣φSn(t)− e−t2/2

∣∣∣→ 0 (328)

Then by Levy’s continuity theorem, this shows that Sn converges to N(0, 1) in distribu-
tion. Noting φSn(t) = ∏kn

i=1 φXi,n(t) and e−t2/2 = ∏kn
i=1 e−σ2

i,nt2/2, by (ii) it suffices to prove

n

∑
i=1
|φXi,n(t)− e−σ2

i,nt2/2| → 0 as n→ ∞ (329)
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First note that by the inequality in (i)

kn

∑
i=1

∣∣∣∣E φXi,n(t)− 1 +
1
2

σ2
i,nt2

∣∣∣∣ ≤ kn

∑
i=1

E |tXi,n|31|Xi,n|≤ε +
kn

∑
i=1

E |tXi,n|21|Xi,n|>ε

≤ εt2
kn

∑
i=1

σ2
i,n +

kn

∑
i=1

E |tXi,n|21|Xi,n|>ε

(330)

The first term is just εt2 and the second tends to 0 as n → ∞ by the Lindeberg condition.
Since ε is arbitrary this shows the expression tends to 0. Next from the bound |ex − 1 +
x| ≤ x2 we get

kn

∑
i=1

∣∣∣∣e−σ2
i,nt2/2 − 1 +

1
2

σ2
i,nt2

∣∣∣∣ ≤ t4
kn

∑
i=1

σ4
i,n ≤ t4 max

i
σ2

i,n

kn

∑
i=1

σ2
i,n = t4 max

i
σ2

i,n (331)

As shown in 4.14, the Lindeberg condition implies the Feller condition, so this term also
tends to 0 as n tends to infinity. �

4.42 (Subgaussian random variables) Let X be a real random variable. Show that the
following statements are equivalent.

(i) There exists a C, c > 0 such that Pr(|X| ≥ t) ≤ Ce−ct2
for all t > 0

(ii) There exists a C′ > 0 such that E|X|k ≤ (C′k)k/2 for all k ≥ 1

(iii) There exists a C′′, c′′ > 0 such that E etX ≤ C′′ec′′t2
for all t ∈ R

Furthermore, if (i) holds for some C, c then (ii) holds for C′ depends only on C, c and
similarly for any of the other implications. Variables obeying (i), (ii)or (iii) are called
subgaussian. The function t 7→ E etX is known as the moment generating function of X; it is
of course closely related to the characteristic function.

• (iii)⇒ (i): Using the Markov inequality for θ > 0

Pr(X ≥ t) = Pr(eθX ≥ eθt) ≤ E eθX

eθt ≤ C′′ exp(c′′θ2 − tθ) ≤ C′′ exp(−t2/2c′′) (332)

In the last inequality, we maximized the expression over all θ to find θ = t/2c′′.
Note that if X satisfies the inequality in (iii) then −X does as well since E et(−X) =

E e(−t)X ≤ C′′ec′′t2
. Therefore using (332) for −X

Pr(X ≤ −t) = Pr(−X ≥ t) ≤ C′′ exp(−t2/2c′′) (333)

Adding this equation to (332) gives Pr(|X| ≥ t) ≤ 2C′′ exp(c′′t2/2), so let C = 2C′′

and c = 1/2c′′ to get the desired relation.
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• (i)⇒ (ii): Use the relation

E|X|k =
∫ ∞

0
kuk−1 Pr(|X| ≥ u) du ≤ kC

∫ ∞

0
uk−1e−cu2

du =
kC
2

c−k/2Γ
(

k
2

)
(334)

The first equality comes from integration by parts of E Xk =
∫

xk Pr(X ∈ dx).
There’s a simple inequality Γ(x) ≤ xx−1 for x > 1 so for k > 2

E|X|k ≤ C
(

k
2c

)k/2

(335)

Choosing C′ ≥ max(C2, 1)/2c and large enough so the inequality is satisfied for
k = 1 and k = 2, we get the desired relation.

• (ii) ⇒ (iii) By Stirling’s approximation, where exist constants C1 and C2 such that
for all k, C1 ≤ k!/kk+1/2e−k ≤ C2. For example, we can take C1 =

√
2π and C2 =√

2πe
1
12 . Therefore for even k.

kk/2

k!
≤ kk/2

C1kk+1/2e−k =
2(k+1)/2e−k/2

C1(k/2)(k+1)/2e−k/2
≤ C22(k+1)/2e−k/2

C1(k/2)!
= A

bk/2

(k/2)!
(336)

where A = e
1

12
√

2 and b = 2/e are absolute constants.

Turning to the moment generating function

E etX ≤ E etX + e−tX

= ∑
k even

2tk E Xk

k!
≤ ∑

k even

2tk(C′k)k/2

k!

≤ 2A ∑
k even

(C′bt2)k/2

(k/2)!
= 2A exp(C′bt2)

(337)

So the desired relationship holds wtih C′′ = 3A and c′′ = C′b.
�

4.43 Use the truncation method to show that in order to prove the central limit theorem
(theorem 8) it suffices to do so in the case when the underlying random variable X is
bounded (and, in particular, subgaussian)

Let X be a random variable with mean 0 and standard deviation σ. For K > 0, let µ =
E X1|X|≤K and consider X≤ = X1|X|≤K − µ and X> = X1|X|≤K + µ so that X = X≤ + X>

and E X≤ = E X> = 0.
Approximate continuous compactly supported G pointwise by a smooth function G̃

such that |G(x) − G̃(x)| ≤ ε everywhere (this is possible, e.g., by Stone-Wierestrass).
Therefore

|E G(X)− E G̃(X)| ≤ ε Pr(X ∈ supp G) ≤ ε (338)
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Thus if we can prove the convergence in distribution on smooth, compactly supported G,
the result extends to all continuous compactly supported G.

Now let X1, X2, . . . be iid copies of X and define X≤k and X>
k as above. Suppose Zk is

independent of X>
k , then

G(Zk +
1√
n

X>
k ) = G(Zk) +

1√
n

G′(Zk)X>
k +

1
2n

G′′(ξ(Zk, X>
k ))X>

k
2 (339)

where ξ(Zk, X>
k ) gives the value of the remainder term. Therefore

|E G(Zk +
1√
n

X>
k )− E G(Zk)| ≤ O(n−1 E X>2

) (340)

(the implied constant depends on the maximum value of G′′, which is bounded because
G′′ is compactly supported).

TODO finish this argument
�

4.46 (Converse direction of moment continuity theorem) Let Xn be a sequence of uni-
formly subgaussian random variables (this there exist C, c > 0 such that Pr(|Xn| ≥ t) ≤
Ce−ct2

for all t > 0 and all n, and suppose Xn converges in distribution to a limit X.
Show that for any k = 0, 1, 2, . . . , E Xk

n converges pointwise to E Xk.

We will use the dominated convergence theorem with the formula

E|Xn|k =
∫ ∞

0
kuk−1 Pr(|Xn| ≥ u) du (341)

The integrands are uniformly bounded by Ckuk−1e−cu2
, which is integrable on [0, ∞). Ex-

cept for countably many u (which is a set of measure zero under the Lesbegue measure),
the integrand converges pointwise to kuk−1 Pr(|X| ≥ u) since Xn converges to X in distri-
bution. Thus

E|Xn|k →
∫ ∞

0
kuk−1 Pr(|X| ≥ u) du = E|X|k (342)

�

4.47 (Chernoff bound) Let X1, . . . , Xn be iid copies of a real random variable X of mean
zero and unit variance, which is subgaussian in the sense of exercise 42. Write Sn :=
X1 + · · ·+ Xn

(i) Show that there exist c′′ > 0 such that E etX ≤ ec′′t2
for all t ∈ R. Conclude that

E etSn/
√

n ≤ ec′′t2
for all t ∈ R

(ii) Conclude the Chernoff bound

Pr
(∣∣∣∣ Sn√

n

∣∣∣∣ ≥ λ

)
≤ Ce−cλ2

(343)

for some C, c > 0 and all λ > 0 and all n ≥ 1
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(i) Since X is subgaussian, we know that E etX ≤ C′ec′t2
, so the key is to show that for

mean 0 and unit variance, this inequality actually holds with C′ = 1 (possibly with a
different c′). Without loss of generality, C′ > 1 since otherwise the inequality already
holds with C′ = 1. Now for |t| ≥ 1 note that

C′ec′t2 ≤ e(c
′+log C′)t2

(344)

so the assertion holds for large enough t.

For |t| < 1, we will show that

etX =
∞

∑
k=0

tkXk

k!
≤ 1 + tX + 3t2

(
∑

k even

Xk

k!

)
(345)

Now we justify the inequality on the right. When X < 0, this follows because all the
odd terms are negative, so we can drop the terms with k ≥ 3. The remaining terms
are all positive, t2 ≥ tk, and we can loosen the inequality by adding some additional
terms and increasing some positive constants to get the above. When X > 0, the
terms are all positive, so we can use t2 ≥ tk, and focus only on ∑∞

k=2 Xk/k!. Note
that by the arithmetic-geometric inequality, we can compare the odd terms to the
even terms for X > 0,

Xk+1

(k + 1)!
+

Xk−1

(k− 1)!
≥
(

2

√
k

k + 1

)
Xk

k!
≥ Xk

k!
(346)

So replacing each odd term with the sum of its neighbors we get

∞

∑
k=2

Xk

k!
≤ 2

X2

2
+ 3 ∑

k≥4
k even

Xk

k!
≤ 3 ∑

k even

Xk

k!
(347)

We’ve shown that for |t| < 1,

etX ≤ 1 + tX +
3
2

t2(e−X + eX) (348)

Taking expectations, using the fact E X = 0 and X is subgaussian, we find

E etX ≤ 1 + 3C′ec′ t2 ≤ exp(3C′ec′ t2) (349)

So if we take c′′ = max(c′ + log C′, 3C′ec′) then we have an inequality E etX ≤ ec′′t2

for all t.

The moment generating function fX(t) = E etX satisfies many of the same functional
relationships as the characteristic function φX(t). In particular, if X and Y are inde-
pendent, then fX+Y(t) = fX(t) fY(t) and fαX(t) = fX(αt) for any α ∈ R. Therefore
fSn/

√
n(t) = fX(t/

√
n)n and for subgaussian X this gives an inequality

fSn/
√

n(t) ≤ enc′′(t/
√

n)2
= ec′′t2

(350)
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(ii) By (i) the moment generating functions of the sums X1+···+Xn√
n are uniformly subgaus-

sian with the same coefficient c′′for all n. Thus, by 4.42, can translate this into an
equivalent set of uniform inequalities, since the constants in any one subgaussian
inequality depend absolutely on the constants in other inequalities. Hence, there are
some constants C, c > 0 independent of n such that

Pr
(∣∣∣∣ Sn√

n

∣∣∣∣ ≥ λ

)
≤ Ce−cλ2

(351)

for all λ > 0.
�

4.48 (Erdös-Kac theorem) For any natural number x ≥ 100 let n be a natural number
drawn uniformly at random from the natural numbers {1, . . . , x} and let ω(n) denote
the number of distint prime factors of n.

(i) Show that for any k = 0, 1, 2, . . . one has

E

(
ω(n)− log log x√

log log x

)k

→ 0 (352)

as x → ∞ if k is odd and

E

(
ω(n)− log log x√

log log x

)k

→ k!
2k/2(k/2)!

(353)

as x → ∞ if k is even.

(ii) Establish the Erdös-Kac theorem

1
x
|{n ≤ x : a ≤ ω(n)− log log x√

log log x
≤ b}| → 1√

2π

∫ b

a
e−x2/2 dx (354)

as x → ∞ for any fixed a < b. Informally, the Erdös-Kac theorem asserts that ω(n)
behaves like N (log log n, log log n) for “random” n. Note this refines the Hardy-
Ramanujan theorem 3.16.

�

Variants of the Central Limit Theorem
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5.5 (Khintchine Inequality)

(i) For any non-negative reals a1, . . . , an and any 0 < p < ∞ show that

E

∣∣∣∣∣ n

∑
i=1

εiai

∣∣∣∣∣
p

≤ Cp

(
n

∑
i=1
|ai|2

)p/2

(355)

for some constant Cp depending only on p. When p = 2 show that one can take
C2 = 1 and that equality holds.

(ii) With the hypothesis in (i) obtain the matching lower bound

E

∣∣∣∣∣ n

∑
i=1

εiai

∣∣∣∣∣
p

≥ cp

(
n

∑
i=1
|ai|2

)p/2

(356)

for some cp > 0 depending only on p.

(iii) For any 0 < p < ∞ and any functions f1, . . . , fn ∈ Lp(X) on a measure space
X = (X,X , µ) show that

E ‖
n

∑
i=1

εi fi‖
p
Lp(X)

≤ Cp‖(
n

∑
i=1
| fi|2)1/2‖p

Lp(X)
(357)

and

E ‖
n

∑
i=1

εi fi‖
p
Lp(X)

≥ cp‖(
n

∑
i=1
| fi|2)1/2‖p

Lp(X)
(358)

with the same constants cp, CP as in (i) and (ii). When p = 2 show that one can take
C2 = c2 = 1 and equality holds.

(iv) (Marcinkiewicz-Zygmund theorem) Let X, Y be measure spaces and let 1 < p < ∞
and suppose T : Lp(X)→ Lp(Y) is a linear operator obeying the bound

||T f ||Lp(Y) ≤ A|| f ||Lp(X) (359)

for all f ∈ Lp(X) and some finite A. Show that for any finite sequence f1, . . . , fn ∈
Lp(X) one has the bound∥∥∥∥∥∥

(
n

∑
i=1
|T fi|2

)1/2
∥∥∥∥∥∥

Lp(Y)

≤ C′p A

∥∥∥∥∥∥
(

n

∑
i=1
| fi|2

)1/2
∥∥∥∥∥∥

Lp(X)

(360)

for some constant C′p depending only on p.

(v) By using Gaussian sums in place of random signs, show that one can take the
constant C′p in (iv) to be 1.
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(i) In the case p = 2 we get the elementary calculation

E

(
n

∑
i=1

εiai

)2

=
n

∑
i,j=1

E εiεjaiaj (361)

Considering the terms on the right, if i 6= j then the term is 0, otherwise the term is
a2

i , so the sum is ∑n
i=1 a2

i as desired.

Let Sn = εiai. Since the range of εiai is in [−ai, ai], the hypothesis of the Höeffding

inequality applies with
(

σ(n)
)2

= ∑n
i=1(2ai)

2 and hence

Pr

(
|Sn| ≥ 4λ

n

∑
i=1

a2
i

)
≤ 2 exp(−2λ2) (362)

Thus we can calculate

E |Sn|p =
∫ ∞

0
pxp−1 Pr(|Sn| ≥ x) dx

≤
∫ ∞

0
2pxp−1 exp(−x2/2(a2

1 + · · ·+ a2
n)

1/2) dx

= p2−p/2Γ
( p

2

)( n

∑
i=1

a2
i

)p/2
(363)

This is the desired inequality with Cp = p2−p/2Γ(p/2)

Here’s an alternative solution: In the case p < 2 we can use Jensen’s inequality with
the concave downward function f (x) = |x|p/2 to find

E(
n

∑
i=1

εiai)
p ≤

(
E(

n

∑
i=1

εiai)
2

)p/2

= (
n

∑
i=1

a2
i )

p/2 (364)

so the inequality holds with Cp = 1.

In the case p > 2 it suffices to consider the case when p is an even integer, since
for arbitrary p suppose the inequality is true for p < 2k with k ∈ N. Then let
S = ∑n

i=1 εiai. Using the inequality in 1.40

(E |S|p)1/p ≤ (E |S|2k)1/2k = C1/2k
2k (

n

∑
i=1

a2
i )

1/2 (365)

Thus we can take Cp = Cp/2k
2k .

When p is an even integer, we get

E(
n

∑
i=1

εiai)
p =

n

∑
i1,...,ip=1

E εi1 · · · εip ai1 · · · aip (366)
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Consider the tuple (i1, . . . , ip). If any value appears an odd number of times, then
this term is 0. Thus its possible to pair each index ik with another index ik′ such that
ik = ik′ . In this case the product εi1 · · · εip is identically 1. On the other hand consider
the deterministic value

(
n

∑
j=1

a2
j )

p/2 =
n

∑
j1,...,jp=1

a2
j1 · · · a

2
jp/2

(367)

We may map each tuple (i1, . . . , ip) where the indices come in pairs to a tuple (j1, . . . , jp)

such that ai1 · · · aip = a2
j1
· · · a2

jp/2
. For example, use a greedy algorithm on the paired

index, so let j1 = i1 and delete the smallest ik such that ik = i1. Then repeat for the
smallest remaining index. The mapping is clearly onto since (j1, j1, j2, j2, . . . , jp/2, jp/2)
maps to (j1, . . . , jp/2). Also, a given tuple (j1, . . . , jp/2) has finitely many pre-images.
By considering the mechanism of the greedy algorithm, an upper bound is given by
(p − 1)!!. That is, there are at most p − 1 indices to associate with i1, and p − 3 to
associate with the next undeleted index (since we remove 1, the pair of 1, and the
next undeleted index), and so on. This bound lets us take Cp = (p− 1)!!, since the
terms of (366) can be collected up to correspond to terms in (367) according to the
greedy algorithm, and this gives at most (p − 1)!! copies of each term. Hence Cp
times (367) bounds (366).

(ii) Note that by Hölder’s inequality for p > 1, let q satisfy p−1 + q−1 = 1,

n

∑
i=1

a2
i = E(

n

∑
i=1

εiai)
2 ≤

(
E |

n

∑
i=1

εiai|p
)1/p(

E |
n

∑
i=1

εiai|q
)1/q

≤
(

E |
n

∑
i=1

εiai|p
)1/p(

C1/q
q (

n

∑
i=1

a2
i )

1/2

) (368)

Thus the desired inequality holds with cp = C−p/q
q . When p = 1 the inequality is an

equality with cp = 1. TODO the case when p < 1.

(iii) For simple functions f1, . . . , fn this follows from parts (i) and (ii) and the linearity
of expectation. We can write fi(x) = ai,j1Aj where the sets A1, . . . , Am are a disjoint
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common refinement of all of the measurable sets defining the fi. Then we have

E
∫

X

∣∣∣∣∣ n

∑
i=1

εi fi

∣∣∣∣∣
p

= E
∫

X

∣∣∣∣∣ n

∑
i=1

εi

m

∑
j=1

ai,j1Aj

∣∣∣∣∣
p

=
m

∑
j=1

µ(Aj)E

∣∣∣∣∣ n

∑
i=1

εiai,j

∣∣∣∣∣
p

≤ Cp

m

∑
j=1

µ(Aj)

(
n

∑
i=1

a2
i,j

)p/2

= Cp

∫
X

∣∣∣∣∣∣
(

n

∑
i=1

f 2
i

)1/2
∣∣∣∣∣∣

p

(369)

This proves the statement for simple functions. For arbtrary functions, approximate
f1, . . . , fn by simple functions until each side of the inequality is within ε of its true
value.

(iv) Stringing together the previous inequalities∥∥∥∥∥∥
(

n

∑
i=1
|T fi|2

)1/2
∥∥∥∥∥∥

p

≤ 1
cp

E

∥∥∥∥∥ n

∑
i=1

εiT fi

∥∥∥∥∥
p

Lp(Y)

=
1
cp

E

∥∥∥∥∥T

(
n

∑
i=1

εi fi

)∥∥∥∥∥
p

Lp(Y)

≤ Ap 1
cp

E

∥∥∥∥∥ n

∑
i=1

εi fi

∥∥∥∥∥
p

Lp(X)

≤
ApCp

cp

∥∥∥∥∥∥
(

n

∑
i=1
| fi|2

)1/2
∥∥∥∥∥∥

p

Lp(X)

(370)

Taking pth roots, the desired inequality holds with C′p = (Cp/cp)1/p

(v) Following the logic above, all we really need to show is that when ε ∼ N(0, 1) then

E

∣∣∣∣∣ n

∑
i=1

εiai

∣∣∣∣∣ = C′p

(
n

∑
i=1

a2
i

)p/2

(371)

In other words, we have Khintchine-like relationship, but its an equality, so the con-
stants, cp = Cp = Cnormal

p , are equal. But this is just a simple property of normal dis-
tributions. If εi ∼ N(0, 1) then ∑n

i=1 aiεi ∼ N(0, ∑ a2
i ). The pth moment of N(0, σ2)

is Cnormal
p σp where

Cnormal
p = E Np =

2p/2
√

π
Γ
(

p + 1
2

)
(372)
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where N ∼ N(0, 1). Since the analogs of cp and Cp are equal for Gaussians, the
analog of C′p in part (iv) is 1.

�

5.6 Let ε1, . . . , εn be i.i.d. copies of a Bernoulli random variable ε drawn uniformly from
{−1,+1}.

(i) Show that E etε ≤ exp(t2/2) for any real t

(ii) Show that for any real numbers a1, . . . , an and any λ > 0 we have

Pr

(∣∣∣∣∣ n

∑
i=1

εiai

∣∣∣∣∣ > λ(
n

∑
i=1

a2
i )

1/2

)
≤ 2e−λ2/2 (373)

(i) First note that

E etε =
1
2

et +
1
2

e−t = cosh t = ∑
n even

tn

n!
(374)

and also

et2/2 =
∞

∑
m=0

t2m

2mm!
= ∑

n even

tn

n!!
(375)

where n!! = n(n − 2)(n − 4) · · · 2. Since n!! ≤ n! its clear that, comparing the ex-
pressions term-by-term, E etε ≤ e−t2/2 as desired.

(ii) Let Sn = ∑n
i=1 εiai and let’s compute the moment generating function

E etSn =
n

∏
i=1

E exp(taiεi) ≤
n

∏
i=1

exp(−t2a2
i /2) = exp(−1

2
t2

n

∑
i=1

a2
i ) (376)

Let σ2
n = ∑n

i=1 a2
i . By Markov’s inequality and the symmetry of Sn, for any t > 0,

Pr(|Sn| > λσn) = 2 Pr(etSn > etλσn)

≤ 2
(

E etSn
) /

etλσn

≤ 2 exp
(
−tλσn + t2σ2

n/2
) (377)

Minimizing over t to get the tightest inequality gives t = λ/σn in which case the
inequality becomes

Pr(|Sn| > λσn) ≤ 2 exp(−λ2/2) (378)

as desired.
�

5.10 Establish the conclusion of Theorem 9 directly from explicit computation of the
probabilities Pr(Sn = k) in the case when each Xj,n takes values in {0, 1} with Pr(Xj,n =
1) = λ/n for some fixed λ > 0.
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Using the formula for the binomial distribution

Pr(Sn = k) =
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
(379)

Now for fixed k
n!

(n− k)!nk =
(n

n

)(n− 1
n

)
· · ·
(

n− k + 1
n

)
→ 1 as n→ ∞ (380)

Also (
1− λ

n

)n−k
=

(
1− λ

n

)n/(
1− λ

n

)k
→ e−λ

/
1 as n→ ∞ (381)

So we get

Pr(Sn = k)→ e−λ λk

k!
as n→ ∞ (382)

as desired. �

5.11 Suppose we replace the hypothesis (iii) in Theorem 9 with the alternative hypoth-
esis

λn :=
n

∑
j=1

Pr(Xj,n = 1)→ ∞ as n→ ∞ (383)

while leaving hypothesis (i) and (ii) unchanged. Show that (Sn− λn)/
√

λn converges in
distribution to the normal distribution N(0, 1)

As in the proof of theorem 9 let Sn = X1,n + · · ·+ Xn,n so that

φ(Sn−λn)/
√

λn
(t) = e−it

√
λn φSn/

√
λn

= e−it
√

λn
n

∏
i=1

(1− pi,n + pi,neit/
√

λn) (384)

Now

1 + pi,n(eit/
√

λn − 1) = exp(pi,n(eit/
√

λn − 1)) + O(p2
i,n(e

it/
√

λn − 1)2)

= exp(pi,n(eit − 1)) + O(p2
i,nt2/λn)

(385)

Hence
n

∏
i=1

(1− pi,n + pi,neit/
√

λn) = exp

(
n

∑
i=1

pi,n(eit/
√

λn − 1)

)
+ O

(
n

∑
i=1

p2
i,nt/λn

)
(386)

Since ∑i p2
i,n/λn ≤ (supi pi,n)∑i pi,n/λn, by assumption (ii) this error term tends to 0

pointwise for all t. Finally we calculate

φ(Sn−λn)/
√

λn
(t) = exp(λneit/

√
λn − λn − it

√
λn) + o(1)

= exp(−t2/2 + O(t3λ−1/2
n )) + o(1)

→ exp(−t2/2)

(387)

By Levy’s continuity theorem, this shows that the quantity (Sn − λn)/
√

λn converges in
distribution to N(0, 1). �
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5.12 For each λ > 0 let Pλ be a Poisson random variable with intensity λ. Show that
as λ → ∞ the random variables (Pλ − λ)/

√
λ converge in distribution to the normal

distribution N(0, 1). Discuss how this is consistent with Theorem 9 and the previous
exercise.

Its a straightforward calculation with characteristic functions. Let S = (Pλ − λ)/
√

λ.
Then

φS(t) = e−it
√

λφP(t/
√

λ)

= exp(−it
√

λ + λ(eit/
√

λ − 1))

= exp(−t2/2 + O(t3/
√

λ))

(388)

Thus as λ → ∞, φS(t) = φN(t) where N ∼ N(0, 1). Thus by Levy’s continuity theorem,
S→ N in distribution.

Note that Pλ is divisible in the sense that Pλ1 + Pλ2 = Pλ1+λ2 and thus we may consider

Pλ = ∑n
i=1 P(i)

λ/n, in which case the P(i) satisfy the assumptions of 5.11. �

5.14 Let Y and Y′ be non-degenerate real random variables. Suppose that a random
variable X lies in the basin of attraction of both Y and Y′. Then there exists a > 0 and
real b such that Y′ = aY + b

�

5.15 Let X lie in the basin of attraction for a non-degenerate law Y

(i) Show that for any iid copies Y1, . . . , Yk of Y there exists a ck > 0 and dk ∈ R such
that

Y1 + · · ·+ Yk = ckY + dk (389)

Also show that
ckY1 + clY2 = ck+lY + dk+l − dl (390)

for all natural numbers k, l ∈N

(ii) Show that the ck are strictly increasing with ckl = ckcl for all k, l ∈ N. Also show
that dkl + ckdl = dkl for all k, l ∈N

(iii) Show that there exists α > 0 such that ck = kα for all k

(iv) If α = 1 and Y1, Y2 are iid copies of Y show that

k
k + l

Y1 +
l

k + l
Y2 = Y + θk,l (391)

for all natural numbers k, l and some bounded real θk,l. Then show that Y has a
stable law in this case.

(v) If α 6= 1 show that dk = µ(k− kα) for some real µ and all k. Then show that Y has a
stable law in this case.
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�

5.16 (Classification of stable laws) Let Y be a non-degenerate stable law, then Y lies in
its own basin of attraction and one can then define ck, dk, α as in the preceding exercise.

(i) If α 6= 1 and µ is as in part (v) of the preceding exercise, show that φY(t)k =

φY(kαt)eiµ(k−kα) for all t and k. Then show that

φY(t) = exp(itµ− |ct|α(1− iβ sgn(t))) (392)

for some real c, β

(ii) Now suppose α = 1. Show that dk+l = dk + dl + O(k + l) for all k, l (where the
implied constant in the O() notation is allowed to depend on Y). Conclude that
dk = O(k log k) for all k

(iii) We continue to assume α = 1. Show that dk = −βk log k for some real number k.
Then use the estimate from part (ii) to show that β does not actually depend on k0.

(iv) We continue to assume α = 1. Show that φY(t)k = φ(kt)e−iβk log k for all t and k.
Then show that

φY(t) = exp(itµ− |ct|(1− iβ sgn(t) log t)) (393)

for all t and some real c.

Its possible to determine which choices of µ, c, α, β are actually achievable by some ran-
dom variable Y but we will not do so here.

�

5.17 Let X be a real random variable which is symmetric (that is, X ∼ −X) and obeys
the distribution identity

Pr(|X| ≥ x) = L(x)
2

πx
(394)

for all x > 0 which L : (0,+∞) → (0,+∞) is a function which is slowly varying in the
sense that L(cx)/L(x)→ 1 as x → ∞ for all c > 0

(i) Show that
E(eitX) = 1− |t|+ o(|t|) (395)

as t→ 0 where o(|t|) denotes a quantity such that o(|t|)/|t| → 0 as t→ 0.

(ii) Let X1, X2, . . . be iid copies of X. Show that X1+···+Xn
n converge in distribution to a

copy of the standard Cauchy distribution (i.e. to a random variable with probabil-
ity density function x 7→ 1

π
1

1+x2 )

�
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