
The Lace Expansion for Self-avoiding Random Walks

RYAN MCCORVIE
Advanced Topics in Probability – Stat 206B

November 10, 2016

Summary

This short exposition describes the lace expansion for the weakly self-avoiding random walk (WSAW).
As an application, the Green’s function asymptotics are shown to resemble the random walk when d > 4
and β is small.

Introduction

The lace expansion first appeared in [1] where Brydges and Spencer show that the weakly self-avoiding walk
is “Gaussian” above the critical dimension. Since then, the variations of the lace expansion have been useful
in a wide variety of contexts including percolation, lattice animals, and contact processes (see [2] for analysis
of these and other models). The lace expansion is a perturbative technique, akin to the cluster expansion
for the Ising model. Therefore one of the simplest and most direction applications remains the weakly
self-avoiding random walk (WSAW), as this model has a small parameter built in to its definition. The
following exposition broadly follows the approach of [3], though the many details about laces themselves
comes follows the description in [2].

Objects of Study

An n-step random walk starting at x and ending at y is a map ω : {0, · · · , n} → Zd with |ω(i+ 1)−ω(i)| = 1
for all i ∈ {0, . . . , n− 1}, ω(0) = x, ω(n) = y. A walk ω is self-avoiding if additionally ω(i) 6= ω(j) for
i 6= j. LetWn(x, y) be the set of n-step walks from x to y and let Sn(x, y) be the corresponding set of self-
avoiding walks. Thus cn(x, y) = |Sn(x, y)| is the number of n-step self-avoiding walks from x to y. Note that
c0(x, y) = δx,y. Owing to translation-invariance, cn(x, y) = cn(0, y− x) so we abbreviate as cn(x) := cn(0, x).
Let Sn = ∪x∈ZdSn(0, x) be the set of all length n self avoiding random walks starting at the origin, and let
cn = |Sn| = ∑x∈Zd cn(x) = ‖cn‖1 be the number of such walks.

Given a walk ω, not necessarily self-avoiding, define

Ust =

{
−β if ω(s) = ω(t)
0 if ω(s) 6= ω(t)

(1)

For β ∈ [0, 1] we can define a weight

Wβ(ω) = ∏
0≤s<t≤n

(1 + Ust(ω)) (2)

= (1− β)|{0≤s<t≤n:ω(s)=ω(t)}| (3)
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The following quantity generalizes cn:

cβ
n(x) = ∑

ω∈Wn(x)
Wβ(ω) (4)

For β = 0, the weight W(ω) is always 1, so this quantity just counts the number of simple random walks.
We will use a superscript rw interchangeably with a superscript 0, so, for example, crw

n (x) = c0
n(x). For

β = 1, c1
n = cn is the number of self-avoiding random walks, since walks with intersections get a weight of 0.

Choosing any 0 < β < 1 defines the counting function for weakly self-avoiding walk (sometimes called the
Domb-Joyce model) where the weight “penalizes” a walk by a factor of (1− β) for each self-intersection.
Since (1−Ust) ≤ 1 it must be

∏
0≤s<t≤m+n

(1 + Ust) ≤ ∏
0≤s<t≤m

(1 + Ust) ∏
m≤s<t≤m+n

(1 + Ust) (5)

Therefore cβ
n is sub-multiplicative

cβ
m+n ≤ cβ

mcβ
n (6)

By Fekete’s lemma the following quantity exists

µβ = lim
n→∞

(
cβ

n

)1/n
(7)

For the simple random walk µ0 = 2d and for the self-avoiding walk µ1 is called the connective constant.
Define the Green’s function as the generating function of cβ

n(x) (this is also called the two-point function)

Gz(x) = Gβ
z (x) =

∞

∑
n=0

cβ
n(x)zn = ∑

ω∈W(x)
Wβ(ω)zlen(ω) (8)

In what follows, if its clear from context, we will suppress β in order to simplify notation. Let zc be the
critical value for the finiteness of the spatial sum

zc = sup

{
z : ‖Gz‖1 = ∑

x∈Zd

Gz(x) < ∞

}
(9)

A consequence of (7) is zc = 1/µβ. Define Grw(x) to be the critical Green’s function for the simple random
walk

Grw(x) = G0
1/2d(x) =

∞

∑
n=0

pn(x) (10)

where pn(x) is the probability a a simple random walk on Zd starting at 0 ends up at x at time n. It’s a
standard result that when d > 2 the sum converges and that

Grw(x) = (a + O(1))|x|2−d (11)

The aim of this paper is to derive the bounds for the WSAW Green’s function. In brief, the following
theorem says that for small enough β, the WSAW Green’s function is approximately the same as the Green’
ss function for the random walk.

Theorem 1 (Random walk upper bound). For d > 4 there exists a β0 such that for β < β0 the β-weakly self
avoiding random walk satisfies

Gβ
zc(x) ≤ 2Grw(x) (12)
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Laces

Our first aim is to find a convolution equation for Gz(x, y) akin to the renewal equation for random walks.
Let D(x) be the random walk transition function given by

D(x) =

{
1 if |x| = 1
0 otherwise

(13)

The renewal equation for random walks has the form

crw
n (x) = D ∗ crw

n−1(x) (14)

Here crw
0 (x) = δ0. Thus, in terms of Green’s functions, this equation may be written

Grw
z (x) = δ0(x) + zD ∗ Grw

z (x) (15)

So if ∆rw = δ0 − zD then Grw
z satisfies the convolution equation

Grw
z ∗ ∆rw

z = δ0 (16)

In terms of Fourier transforms, this equation is

Ĝrw
z (k) =

1
∆̂z(k)

=
1

1− zD̂(k)
(17)

where D̂(k) = 2 ∑i cos(ki).
For the weakly self avoiding walk (suppressing β in the notation), we will show there is a function πn(x)

which satisfies

cn(x) = D ∗ cn−1(x) +
n

∑
m=1

πm ∗ cn−m(x) (18)

Defining Πz(x) = ∑∞
n=0 πn(x)zn, we can write this equation in terms of generating functions,

Gz(x) = δ0(x) + z(D ∗ Gz)(x) + (Πz ∗ Gz)(x) (19)

Thus in terms of
∆z = δ0 − zD−Πz (20)

the function Gz satisfies a convolution equation akin to the renewal equation for the random walk

Gz ∗ ∆z = δ0 (21)

In terms of Fourier transforms, this equation can be written

Ĝz(k) =
1

∆̂z(k)
=

1
1− zD̂(k)− Π̂z(k)

(22)

Our key aim in the next sections is to define the functions Πz(x).

Inclusion-Exclusion

For the moment let’s just consider the case β = 1, the self avoiding walk. For n ≥ 1 we can write a recurrence

cn(x) = ∑
y:|y|=1

c1(y)cn−1(y, x)− ∑
ω∈Sn−1(y,x)

1[0 ∈ ω]

 (23)
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In this equation, the first term counts walks which are self-avoiding after the first step, and the second
subtracts away the walks which return to the origin. Substituting this equation into (8) gives

Gz(x) = δ0,x + z ∑
y:|y|=1

Gz(y, x)− ∑
y:|y|=1

∞

∑
n=0

zn+1 ∑
ω∈Sn(y,x)

1[0 ∈ ω] (24)

Note the second term can be written as a convolution zD ∗ Gz.
Our aim is to write the last term as a convolution with Gz also. To this end note that a self-avoiding path

through the origin can be thought of two self avoiding paths from the origin whose mutual intersection is
only at the origin. Thus repeating the inclusion-exclusion approach, we can count all pairs of paths which
emerge from the origin, and then subtract away the pairs of paths which intersect at another point.

∑
ω∈Sn(y,x)

1[0 ∈ ω] =
n

∑
m=1

∑
ω(1)∈Sm(y,0)

ω(2)∈Sn−m(0,x)

1[ω(1) ∩ω(2) = {0}] (25)

=
n

∑
m=1

cm(y, 0)cn−m(0, x)− ∑
ω(1)∈Sm(y,0)

ω(2)∈Sn−m(0,x)

1[ω(1) ∩ω(2) 6= {0}]

 (26)

Since |y| = 1, another perspective is that the number cm(y, 0) counts self-avoiding polygons of length m + 1,
since we can add an edge from 0 to y to close the polygon. Let Um be the set of m-step self-avoiding polygons
and let um = |Um| be the number of such polygons. The above equations imply

∑
y:|y|=1

∞

∑
n=0

zn+1 ∑
ω∈Sn(y,x)

1[0 ∈ ω] =

(
∞

∑
m=2

umzm

)
Gz(0, x)− ∑

m≥2
n≥0

∑
ω(1)∈Um

ω(2)∈Sn(0,x)

zm+n1[ω(1) ∩ω(2) 6= {0}] (27)

The right-hand side is partially in the form of a convolution equation, since the first term is the product of
the Green’s function with ∑m≥2 umzm, a constant (as a function of x) .

Pushing forward with this inclusion-exclusion approach, let’s analyze the remaining term on the right
side of the above equation. Let m1 be the first time along ω(2) such that ω(2)(m1) ∈ ω(1) and suppose
v = ω(2)(m1). Then we can again relax the self-avoidance requirement for the parts of ω(2) before and after
m1 to get a convolution, and subtract out a correction term.

Continuing in this way, relaxing self-avoidance requirements, and subtracting a correction, we ultimately
obtain an equation

Gz(x) = δ0,x + z ∑
|y|=1

Gz(y, x) + ∑
v

Πz(0, v)Gz(v, x) (28)

where

Πz(0, v) =
∞

∑
N=1

(−1)NΠ(N)
z (0, v) (29)

Each Π(N)
z (0, v) represents subsequent correction terms. As N increases, we must get a sequence of increas-

ingly complicated sets of intersection and non-intersection requirements for the types of paths included at
this stage of the inclusion-exclusion. For N = 1 term Π(1)(0, v) corresponds to paths which are self-avoiding
polygons and is given by

Π(1)(0, v) = δ0,v ∑
m≥2

umzm (30)

The N = 2 term is given by a sum indexed by (m1, m2, m3)

Π(2)(0, v) = ∑
mi≥1

∑
ωi∈Smi (v)

zm1+m2+m31[ω(1), ω(2), ω(3)] (31)
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Figure 1: Diagrammatic representation of lace functions

where the indicator is 0 if the ω(i) intersect at any points other than at 0 and v. Figure 1 gives a diagrammatic
sketches for the types of paths represented by the first three terms Π(N)

z (0, v). The slashed line indicates a
walk which may be length 0, whereas other lines represent paths which are at least length 1. The unlabeled
vertexes are summed over all of Zd. While its possible to continue this combinatorial analysis by directly
describing the diagrams involved, we will not, preferring instead the algebraic approach in a subsequent
section.

Diagrammatic bounds

Let’s find some bounds for the functions Π(N). For N = 1, note that

‖Π(1)
z ‖1 = ∑

m≥2
∑

ω∈Um

zlen ω = z ∑
y:|y|=1

Gz(y, 0) ≤ 2dz sup
x 6=0

Gz(x) (32)

If we define

Hz(x, y) = Gz(x, y)− δx,y =

{
Gz(x, y) x 6= y
0 x = y

(33)

then this becomes
‖Π(1)

z ‖1 ≤ 2dz‖Hz‖∞ (34)

For N ≥ 2, the diagrams in figure 1 suggest some natural upper bounds for the functions, which are
given by relaxing the requirements on self-intersection. For example, in Π(2)(0, v) if we relax the condition
that the three paths between 0 and v must avoid each other, but not that they are each self-avoiding, we get
the inequalities

|Π(2)
z (0, x)| ≤ H3

z (0, x) and ‖Π(2)
z ‖1 ≤ ‖Hz‖3

3 (35)

In general, for each function Π(N), by relaxing the intersection constraints on the corresponding diagram, its
possible to find a bound which scales as the Nth power of Hz (see [2] for details).

‖Π(N)‖1 ≤ ‖Hz‖∞‖Hz ∗ Gz‖N−1
∞ (36)

We can then use this to bound the Green’s function for the SAW. In broad strokes, if we know that Gz (and
hence Hz) is small, then we can control Πz, which then in turn can lead to bounds for Gz. Unfortunately this
all sounds a bit circular, since we need a bound for Gz in the first place for this analysis to work! However
careful analysis lets us pull ourselves up by our bootstraps. Essentially we’ll use the continuity of Gz and a
sort of continuous analog of induction on z to get the bounds we’re looking for.

Lace Resummation

Turning away from the combinatorial approach of the previous section, we now introduce the concept of
laces, which allows for an algebraic definition of Π(N). We follow the approach described in [4], and make a
definition

Definition. Let P be a finite set (of “properties”). A mapping ` : 2P → 2P is a lace map if it satisfies for all
S, T ⊂ P
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a) `(S) ⊂ S
b) `(S) ⊂ T ⊂ S⇒ `(S) = `(T)
c) `(S) = `(T)⇒ `(S ∪ T) = `(S)

A set L for which `(L) = L is called a lace. Let the collection of size N laces be L(N) and let the collection
of all laces be L = ∪NL(N). By applying (b) to T = `(S) we see that `(`(S)) = `(S). Hence `(S) is always a
lace, and ` is a projection, `2 = `.

If L is a lace, then by (c) there is a set C(L) ⊂ P \ L such that

{S ⊂ P|`(S) = L} = {S|L ⊂ S ⊂ L ∪ C(L)} (37)

The elements of C(L) are the elements compatible with L. For any lace L it follows that C(L) = {p ∈
P|`(L ∪ {p}) = L}.
Theorem 2. Let Ω be a finite set of elements and let f : Ω→ R be a function on Ω, and let β ∈ [0, 1]. Assume that
each ω ∈ Ω is associated a subset of the properties S(ω) ⊂ P, and we penalize Ω by the weight W(ω) = (1− β)|S(ω)|

for the number of properties that it has. For a given lace L, let WL(ω) = (1− β)|S(ω)∩C(L)|, be a penalty for the
number of properties ω has which are compatible with L. For a lace L, consider the sum over the ω which have all the
properties in L, but which are penalized for the properties in C(L)

NL = ∑
ω∈Ω:L⊂S(ω)

f (ω)WL(ω) (38)

In this situation, we can expand the sum in terms of the lace sums

∑
ω∈Ω

f (ω)W(ω) =
∞

∑
N=0

(−1)N βN ∑
L:|L|=N

NL (39)

Proof. Let Up be a variable associated with each p ∈ P. Every subset S ⊂ P is associated with a unique lace
L = `(S) and by (c) the collection of subsets associated with L consists of the interval (in the Boolean lattice)
between L and L ∪ C(L). That is, `−1(L) consists exactly of all T ⊂ P such that L ⊂ T ⊂ L ∪ C(L). Therefore

∏
p∈P

(1 + Up) = ∑
S⊂P

∏
s∈X

Us = ∑
L∈L

∑
S:`(S)=L

∏
s∈S

Us (40)

= ∑
L∈L

∏
l∈L

Ul ∑
S:`(S)=L

∏
s∈S\L

Us = ∑
L∈L

∏
s∈L

Us ∏
s∈C(L)

(1 + Us) (41)

Now for each ω ∈ Ω and p ∈ P let Up(ω) = −β if ω has property p and 0 otherwise. Hence

∑
ω∈Ω

f (ω)W(ω) = ∑
ω∈Ω

f (ω) ∏
p∈P

(1 + Up(ω)) (42)

= ∑
ω∈Ω

f (ω) ∑
L∈L

∏
s∈L

Us(ω) ∏
s∈C(L)

(1 + Us(ω)) (43)

= ∑
L∈L

∑
ω∈Ω

f (ω) ∏
s∈L

Us(ω) ∏
s∈C(L)

(1 + Us(ω)) (44)

= ∑
L∈L

∑
ω∈Ω:S(ω)⊂L

f (ω) (−β)|L|WL(ω) (45)

= ∑
L∈L

(−1)|L|β|L|NL (46)

The theorem follows by grouping these terms according to the size of the lace |L|.

If β = 1, then NL is the sum over all of the ω which have all of the properties in L and none of the
properties in C(L), and the overall sum ∑ω∈Ω f (ω)W(ω) is just the sum ∑ω∈S f (ω) of elements which have
none of the properties. As a concrete example, let `(S) = S and W(ω) = 1. In this setting theorem 2 is just
describes the classic formula for inclusion-exclusion. In this case, every subset of P is a lace, and C(S) = ∅
for all S.
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Figure 2: Laces and corresponding points

Brydge-Spencer Laces

For the weakly self-avoiding walk, we take Ω =Wn(0, x) and consider the set of properties P[a, b] = {(s, t) :
a ≤ s < t ≤ b}. For brevity we will write st for the ordered pair (s, t). For a path ω ∈ Sn, the property
st represents that ω(s) = ω(t), i.e., that ω intersects itself at times s and t. Its useful to think of the times
a, a + 1, . . . , b as arrayed in a line and the elements st as arcs (edges) connecting s and t, resulting in a graph.
If we take f (ω) = zlen ω then the Green’s function Gz has the form of the sum in theorem 2

Grw(x) = ∑
ω∈Sn(0,x)

W(ω)zlen ω = ∑
ω∈Ω

f (ω)W(ω) (47)

A graph Γ ⊂ P[a, b] is connected if both a and b are endpoints of arcs in Γ, and for any c ∈ (a, b), there is
an arc st ∈ Γ with s < c < t. In other words, Γ is connected if the union of intervals ∪st∈Γ(s, t) = (a, b). Note
this definition is not the usual definition of path-connectedness as it incorporates the fact that the vertices
{a, a + 1, · · · , b} are ordered.

A lace mapping was defined by Brydges and Spencer in [1] on the set P[a, b]. For a connected graph
Γ ⊂ P[a, b], let s1 = a and let t1 be the largest t such at ∈ Γ. Among all arcs st which “go over” t1, let t2 be the
endpoint which goes the furthest. That is, t2 = max{t : st ∈ Γ, s < t1}. Then among the arcs which connect
to t2, take s2 to be the left endpoint which is farthest left. That is, s2 = min{s : st2 ∈ Γ}. Recursively one
defines ti = max{t : st ∈ Γ, s < ti−1} and si = min{s : sti ∈ Γ} until eventually tn = b for some n. For an
arbitrary graph, `(Γ) is union of arcs which correspond to the laces for each connected component of Γ.

Let’s briefly verify that ` is a lace map. Note that property (a) follows by definition since the procedure
selects a subset of the arcs in a graph. Property (b) follows because the arcs chosen at each step are “maximal”
and the arcs retain this property even if some non-maximal edges are removed. Similarly, property (c)
follows because the lace arcs are maximal among arcs in each of S and T, so they will be maximal in the
union S ∪ T.

As described above, lace L = `(G) for a connected graph G results in a connected graph. Moreover,
the lace is a minimal connected graph in the sense that if any arc is removed from L, then the graph is no
longer connected. These two properties completely characterize the connected laces. As a result, a lace
L is equivalent to a certain ordering of the si and ti. For N = 1 we have a = s1 < t1 = b. For N ≥ 2, a
graph Γ ⊂ P[a, b] is a connected lace if and only if Γ = {s1t1, s2t2, . . . , sNtN} and the siti satisfy the following
inequalities (see figure 2).

a = s1 < s2, sl+1 < tl ≤ sl+2 (for l = 1, · · · , N − 2), sN < tN−1 < tN = b (48)

Thus L divides [a, b] into 2N − 1 subintervals

[s1, s2], [s2, t1], [t1, s3], [s3, t2], · · · , [sN , tN−1], [tN−1, tN ] (49)

where the intervals number 3, 5, · · · , (2N − 3) may be length 0, but the others have length at least 1. By
connecting the points in space on the path from time a to time b which correspond to the laces, we get the
diagrams in figure 3. In these diagrams, the segments with slashes in them may be empty.

Its worth noting that laces get their name from the fact that the interlacing arcs of figure 2 resembles the
lace at the edge of a handkerchief or table cloth.
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Figure 3: Path diagrams corresponding to laces

Laces and the Convolution Equation

As noted before, the penalty weight function satisfies the following equation

W[a, b](ω) = W[a, b] = ∏
st∈P[a,b]

(1 + Ust) = ∑
Γ⊂P[a,b]

∏
st∈Γ

Ust (50)

(Here we suppress the dependence on ω and emphasize the dependence on time). Define an analogous
quantity

V[a, b] = ∑
Γ⊂P[a,b]

Γ is connected

∏
st∈Γ

Ust (51)

where we take the sum only over connected graphs Γ.

Lemma 3.

W[a, b] = W[a + 1, b] +
b

∑
m=a+1

V[a, m]W[m, b] (52)

Proof. Recall that W[a, b] = ∑Γ⊂P[a,b] ∏st∈Γ Ust is the sum over all graphs. Thus we can divide the sum into
two parts, a sum over graphs which include an arc starting at a and those which do not. Summing over the
later, we get the term W[a + 1, b].

Let Γ be a graph containing an arc with a and let m(Γ) be the largest value of j such that arcs with both
ends in [a, m] are connected. Call this connected subgraph Γc. Because there is an arc containing a, the graph
Γc 6= ∅ and j ≥ a + 1. By maximality there is no arc from an element of [a, j] to an element of [j, b]. Thus

∏st∈Γ Ust =
(
∏st∈Γc Ust

) (
∏st∈Γ\Γc Ust

)
where Γ \ Γc is a graph on [m, b]. Thus summing over all graphs

with m(Γ) = m we get V[a, m]W[m, b], and summing over m gives the theorem.

In light of this lemma, we can define

Π(0, x) = ∑
ω∈Sn(0,x)

zlen(ω)V[0, len(ω)](ω) (53)

and to derive get the relationship

Gz = ∑
ω∈Sn(0,x)

zlen(ω)W[0, len(ω)](ω) (54)

= δ0 + ∑
len(ω)≥1

zlen(ω)

(
W[1, len(ω)] +

len(ω)

∑
m=1

V[0, m]W[m, len(ω)]

)
(55)

= δ0 + z ∑
|y|=1

Gz(x− y) + ∑
y

Π(y)G(x− y) (56)
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We have accomplished our goal of finding a Π so that the Green’s function Gz satisfies (19).
Furthermore if we define

Π(N)(x) = βN ∑
L∈L(N)

∑
ω∈S(x)
L⊂S(ω)

zlen(ω)WL(ω) (57)

then theorem 2 shows that we can write

Π(x) =
∞

∑
N=1

(−1)NΠ(N)(x) (58)

Thus we have an algebraic expansion akin to the combinatorial one of the previous section in terms of laces.

Lace Expansion Analysis

Given a lace L = {s1t1, . . . , sNtN}, let D(L) be all arcs which do not cross over of the si or ti. Each of these
arcs is compatible with L, so D(L) ⊂ C(L) and if we define the penalty for all of the self-intersections which
correspond to D(L).

W̃L(ω) = (1− β)|S(ω)∩D(L)| (59)

it follows that W̃L(ω) ≥WL(ω). Let ωk represents the collection of paths between each pair of consecutive
times in ∪i{si, ti}. The correct of ordering of times is given by the inequalities (48), or can be read from the
diagram in figure 2. We can write W̃L in terms of the standard penalty applied to each ωk

∏
st∈D(L)

(1 + Ust(ω)) = ∏
k

W(ωk) (60)

In essence, by considering only D(L) instead of C(L), we are relaxing the constraint that the segments ωk
are penalized for intersecting each other, and instead we only penalize them for self-intersection. Thus the
quantity

Π̃(N)(x) = βN ∑
L∈L(N)

∑
ω∈S(x)
L⊂S(ω)

zlen(ω)W̃L(ω) (61)

= ∑
L∈L(N)

∑
ω∈S(x)
L⊂S(ω)

∏
k

zlen(ωk)W(ωk) (62)

can be written as a convolution of Green’s functions Gz corresponding to each ωk. Hence we get the
inequality

|Π(N)(x)| ≤ βN ∑
0=x1,...,xN=x

Gz(x1 − x2)
2Gz(x3 − x1)Gz(x2 − x3)×

· · · × Gz(xN−1 − xN−2)Gz(xN − xN−2)Gz(xN − xN−1)
2 (63)

Again figure 2, which corresponds to the inequalities in (48), gives the correspondence between the ωk and
the xi.

This description doesn’t quite hold for Π(1), but direct analysis gives the bound

Π(1)(0) ≤ β

1− β
Gz(0) Π(1)(x) = 0 for x 6= 0 (64)

For Π(2) this bound is
|Π(2)| ≤ β2Gz(x)3 (65)

In order to continue this analysis, we will need a couple of technical lemmas related to convolutions of
power functions.
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Lemma 4. Suppose that for f , g : Zd we have bounds | f (x)| ≤ |x|−a and |g(x)| ≤ |x|−b with a ≥ b > 0. If a > d
then |( f ∗ g)(x)| ≤ C|x|−b

Proof. Write

|( f ∗ g)(x)| ≤ ∑
y:|y−x|≤|y|

1
|x− y|a|y|b

+ ∑
y:|y−x|>|y|

1
|x− y|a|y|b

(66)

A change of variable z = x − y in the second term along with the observation that |x|−a ≤ |x|−b lets us
conclude

|( f ∗ g)(x)| ≤ 2 ∑
y:|y−x|≤|y|

1
|x− y|a|y|b

(67)

Now in this sum, |y| ≥ 1
2 |x| so we get a bound

|( f ∗ g)(x)| ≤ 2b+1

|x|b ∑
y:|x−y|≤|y|

1
|x− y|a ≤ C|x|−b (68)

where the final inequality follows from the fact that the right-hand side sum is bound by the convergent sum
∑x∈Zd |x|−a

Lemma 5. Let d > 4. Then for u, v ∈ Zd

∑
w∈Zd

|w|4−2d|w− v|2−d|w− u|2−d ≤ C|u|2−d|v|2−d (69)

Proof. By Cauchy-Schwartz(
∑

w∈Zd

|w|4−2d|v− w|2−d|u− w|2−d

)2

≤ C

(
∑

w∈Zd

|w|4−2d|v− w|4−2d

)(
∑

w∈Zd

|w|4−2d|u− w|4−2d

)
(70)

If d > 4 then lemma 4 gives
∑

w∈Zd

|w|4−2d|u− w|4−2d ≤ C|u|4−2d (71)

Lemma 6 (Lace expansion analysis). Suppose that d > 4. Define ∆z by equation (20). Then there exists a β0 such
that for β < β0 and z < zc

a) ∆z is symmetric under coordinate permutations and is even in every coordinate.
b) ∑x ∆z(x) ≥ 0
c) If Gz(x) ≤ 3Grw(x) for all x ∈ Zd

|∆z(x)− ∆rw
z (x)| ≤ Cβ|x|−d−4 (72)

Proof. Property (a) is immediate from the definition ∆z, since Πn(0, x) is symmetric under coordinate
permutations and multiplying any coordinate by −1. Property (b) follows from

∑
x∈Zd

∆z(x) = ∆̂(0) =
1

Ĝz(0)
=

1
∑x∈Zd Gz(x)

(73)

and the right hand side is clearly non-negative.
Using our assumption that Gz ≤ 3Grw and (11) and (65), we have

|Π(2)| ≤ β227Grw(x)3 ≤ C|x|6−3d (74)
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Define A(2)(x) = |x|6−3d and for N ≥ 3,

A(N)(x) = ∑
0=x1,··· ,xN=x

|x1 − x2|4−2d|x3 − x1|2−d|x2 − x3|2−d · · · |xN − xN−1|4−2d (75)

(where like in equation (63) the terms are taken from figure 2). So by (63) and our assumption Gz(x) ≤ 3Grw

and (11) we get a bound |Π(N)(x)| ≤ (Cβ)N A(N)(x).
Now let’s use induction to show,

A(N)(x) ≤ CN |x|6−3d (76)

We’ve already shown this for N = 2. For N > 2 write

A(N+1)(x) = ∑
x2,...,xN−1

(terms without xN) ∑
xN

|x− xN |4−2d|xN − xN−1|2−d|xN − xN−2|2−d (77)

≤ ∑
x2,...,xN−1

(terms without xN) |x− xN−1|2−d|x− xN−2|2−d (78)

= CA(N)(x) (79)

where the inequality comes from applying lemma 5 with w = x− xN , u = x− xN−1 and v = x− xN−2.
By (76), since d ≥ 5 we have,

|Π(N)(x)| ≤ (Cβ)N A(N)(x) ≤ (C1β)N |x|6−3d ≤ (C1β)N |x|−d−4 (80)

This shows that Π(N) decays exponentially for every β < β0 = 1/(2C1). Thus Π(x) converges absolutely
and we get the desired estimate for (c), namely |Π(x)| ≤ Cβ|x|−d−4. Furthermore this also justifies the
convergence of the Fourier transform, which we used used to prove (b).

Random Walk Bounds

We now turn away from the lace expansion to perform a complementary analysis. Rather than bounding ∆z,
we assume that ∆ is bounded, and then we solve the convolution equation (21) for G. There are different
approaches to this problem, but here we define a Banach algebra where multiplication is given by ∗, and
then let G be the inverse to ∆ in this setting.

Banach Algebra Setting

Turning away from the lace expansion for a moment, we aim to solve equation (16) for G using Banach
algebra techniques. To that end define a norm on f : Zd → R by

‖ f ‖ := 2d+1 max
(
‖ f ‖1 ,

∥∥∥|x|d f
∥∥∥

∞

)
(81)

Lemma 7. The function space B = {‖ f ‖ < ∞} is a Banach algebra with respect to convolution.

Proof. Its clear from inspection that ‖‖ is a norm. Thus we just need to show that convolution is compatible
with the norm.

‖ f ∗ g‖1 = ∑
x∈Zd

|( f ∗ g)(x)| ≤
(

∑
x
| f (x)|

)(
∑
x
|g(x)|

)
= ‖ f ‖1‖g‖1 ≤ 2−2d−2‖ f ‖‖g‖ (82)

and also

|( f ∗ g)(x)| ≤ ∑
y∈Zd

| f (y)||g(x− y)| (83)

= ∑
|y|>|y−x|

| f (y)||g(x− y)|+ ∑
|y|≤|y−x|

| f (y)||g(x− y)| (84)
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In the first term where |y| > |x− y| we have |y| > |x|/2. Therefore

∑
|y|>|y−x|

| f (y)||g(x− y)| ≤ sup
|y|> 1

2 |x|
| f (y)| ∑

|y|>|y−x|
|g(x− y)| (85)

≤
(

1
2
|x|
)−d

sup
y∈Zd

(
f (y)|y|d

)
‖g‖1 (86)

≤2−d−2‖ f ‖‖g‖|x|−d (87)

The second term is similar so 2d+1‖( f ∗ g)|x|d‖∞ ≤ 2 · 1
2‖ f ‖‖g‖, and hence ‖ f ∗ g‖ ≤ ‖ f ‖‖g‖

Note the unit in this algebra is δ0. Next we quote a basic result for invertible elements of of Banach
algebras

Lemma 8 (Banach inverse). Let B be a Bananch algebra and let e be its unit. If ‖ f − e‖ < 1 then f is invertible and

‖ f−1 − e‖ ≤ ‖ f − e‖
1− ‖ f − e‖ (88)

Proof. Let y = e− f and take f−1 = e + y + y2 + y3 · · ·

Deconvolution

Now we use the Edgeworth expansion of Grw to analyze convolutions with Grw
z

Lemma 9. Let d > 2, and z ∈ [0, 1
2d ]. Suppose that ρ : Zd → R satisfies the properties

a) ρ is symmetric to coordinate permutations and flips
b) ∑x ρ(x) = 0
c) |ρ(x)| ≤ |x|−d−4

then ‖ρ ∗ Grw
z ‖ ≤ C

Sketch of proof. First take z = 1
2d , the critical value. Then the Green’s function has an expansion (sometimes

called an Edgeworth expansion) of the form

Grw(x) = a|x|2−d + b|x|−d + O(x−d−2) (89)

Divide the sum (ρ ∗ Grw)(x) = ∑y ρ(y)Grw(x− y) into two parts, |y| < 1
2 |x| and where |y| ≥ 1

2 |x|. For the
small y case, Taylor expand the terms |y− x|k which appear in the convolution about y = 0. By cleverly
using the harmonicity of |x|2−d, the symmetries of ρ, and the bound (c), its possible to show the leading
order term is |x|−d−1.

When |y| ≥ 1
2 |x|, further divide the sum into when |x| ≤ |x− y| and |x| > |x− y|. Using the leading

term of (89) and the bound (c), we can bound the sum in each case by |x|−d−2. Thus both ‖|x|d(ρ ∗ Grw)‖∞
and ‖ρ ∗ Grw‖1 are finite, and we conclude ‖ρ ∗ Grw‖ ≤ C

For z < 1
2d , note

‖ρ ∗ Grw
z ‖ = ‖ρ ∗ Grw ∗ ∆rw ∗ Grw

z ‖ ≤ ‖ρ ∗ Grw‖‖∆rw ∗ Grw
z ‖ (90)

The first term is bound by the above argument. The second terms can be bound by using the inequality
|pn(x)| ≤ Cn−d/2e−c|x|/n.

Now we use the previous estimates to find a solution to the convolution equation.

Lemma 10. Let d > 2, and suppose there is a ∆ satisfying conditions (a)-(c) of lemma 6. Then there is a β0 such that
for all β < β0 there is a function G which satisfies G ∗ ∆ = δ0 and |G(x)| ≤ 2Grw(x)
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Proof. Given ∆, find z such that ∑x∈Zd ∆ = ∑x∈Zd ∆rw
z . For sufficiently small β, such a z exists because

∑x∈Zd ∆rw
z = 1− 2dz, and ∑x∈Zd ∆(x) ∈ [0, Cβ). Then define

ρ =
1

Cβ
(∆− ∆rw

z ) (91)

where C is the constant from lemma 6. Then ρ satisfies the hypothesis of lemma 9, and hence

‖ρ ∗ Grw
z ‖ ≤ C′ (92)

which implies
‖∆ ∗ Grw

z − δ0‖ = ‖(∆− ∆rw
z ) ∗ Grw

z ‖ ≤ C′′β (93)

where C′′ = C′C. Therefore, if β is small enough, then ∆ ∗ Grw
z has an inverse by lemma 8 and our desired

function is given by G = (∆ ∗ Grw
z )−1 ∗ Grw

z . Its certainly the case that G ∗ ∆ = δ0, so all that remains is to
show that |G(x)| ≤ 2|Grw(x)|.

Write (∆ ∗ Grw
z )−1 = δ0 + R where ‖R‖ ≤ C′′β

1−C′′β ≤ 2C′′β (for small enough β). Note that

|G| = |(δ + R) ∗ Grw
z | ≤ |Grw

z |+ |R ∗ Grw
Z | (94)

The first term is bound by Grw since z ≤ zc and Gz is monotonic in z. For the second consider separately the
terms of the sum

(R ∗ Grw
z )(x) = ∑

y∈Zd

R(y)Grw
z (x− y) (95)

where |y| < 1
2 |x| and |y| ≥ 1

2 |x| .
If |y| < 1

2 |x| then also |x− y| ≥ 1
2 |x| so |R(y− x)| ≤ Cβ|x|−d.∣∣∣∣∣∣ ∑

|y|< 1
2 |x|

Grw
z (y)E(y− x)

∣∣∣∣∣∣ ≤ Cβ|x|−d ∑
|y|< 1

2 |x|
|Grw

z (y)| ≤ Cβ|x|−d ∑
|y|< 1

2 |x|
|y|2−d ≤ Cβ|x|2−d (96)

On the other hand if |y| ≥ 1
2 |x|∣∣∣∣∣∣ ∑

|y|≥ 1
2 |x|

Grw
z (y)E(y− x)

∣∣∣∣∣∣ ≤ sup
|y|≥ 1

2 |x|
|Grw

z (y)|∑
y
|E(x− y)| ≤ C

(
1
2
|x|
)2−d

· Cβ ≤ C′β|x|2−d (97)

Thus|E ∗ Grw
z | ≤ Cβ|x|2−d ≤ Grw for small enough β. Therefore |G(x)| ≤ 2Grw(x) as desired.

Bootstrap analysis

Now we can pull all the parts together.

Proof of theorem 1. Fix β small enough so that lemma 6 and lemma 10 hold. Now consider

f (z) = sup
x∈Zd

Gz(x)
Grw(x)

(98)

Now at z = 0, Gz(x) = δ0 but Grw ≥ δ0. Therefore f (0) ≤ 1. Next note that f (z) is continuous in the
interval [0, zc). Since zc is the radius of convergence for ∑x Gz(x) its certainly a lower bound for the radius of
convergence of each term Gz(x). Therefore each Gz(x)/Grw(x) is continuous and finite for any particular x.
Furthermore Gz(x) only contains paths of length |x|, so these functions decay exponentially in x uniformly
on [0, z] for z < zc. Therefore the supremum exists and is continuous, since the supremum is effectively a
maximum over a finite number of x. This argument applies to all z < zc, and therefore f is continuous on
[0, zc).
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Next we show there is a no-go zone, that its not possible for f (z) ∈ (2, 3] for any z < zc. If f (z) ≤ 3
then the conditions of lemma 6 are satisfied, and there is some ∆z with Gz ∗ ∆z = δ0 where ∆z satisfies the
conditions (a)-(c) in lemma 6. But then by lemma 10, there is a function G which satisfies G ∗ ∆z = δ0 and
G(x) ≤ 2Grw(x).

It must be the case that Gz = G. Note that both are in `2(Zd). By assumption Gz ∈ `2 and G ∈ `2 by the
conclusion of lemma 10, as is ∆z by part (c) of lemma 6. But in `2 we can solve the convolution equation by
the Fourier transform, and the solution is unique. Therefore |Gz(x)| = |G(x)| ≤ 2Grw(x).

So f starts below 1, is continuous, and it may not enter the region (2, 3]. Therefore f (z) ≤ 2 for all z < zc.
By the monotone convergence theorem, Gzc(x) = limz↑zc Gz(x) thus we conclude |Gzc(x)| ≤ 2|Grw(x)|
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