
The Hawkes Process
Qualifying Examination Presentation

Ryan McCorvie

Updated: 2018/02/09



Overview

1. Orientation

2. Point Processes

3. Hazard Rate Techniques

4. Branching Process Techniques

5. Martingale Techniques

6. Simulation

7. Extensions
1



Orientation



Point Process

A point process is just a random collection of points of some
reference space S.

Figure: Realization of a Poisson point process on [0, 1]2



Point Process on R+

On R+ we can characterize the process by:

} For measurable A ⊂ R+ the counting measure given by
N(A) = # points in A

} The counting function Nt � N([0, t])
} The sequence of points tn � inf{t ∈ R+ : Nt ≥ n}
} The interarrival times τn � tn − tn−1 (taking t0 � 0)



Hazard Rates

Informally, the conditional hazard rate or conditional intensity at
time t is the probability per unit time that the next point is
occurs at t, conditional surving until t. Let t∗ be the time the
next point occurs

λ(t)∆t ≈ P(t � t∗ | Ns for s < t and t∗ ≥ t)

Conditional intensity

λ(t) �
d
dt P(t∗ ≥ t | Ns for s < t)
P(t∗ ≥ t | Ns for s < t)

� − d
dt

logP(t∗ ≥ t | Ns for s < t)



Hazard Rates

Examples

} The Poisson process has constant intensity λ.
} A one-point exponential process has constant intensity

until the point occurs, when the intensity drops to 0.
} A renewal process has intensity λ(t) � f (t − tn−1)where

tn−1 is the last point before t, and f is a fixed function.

For a regular process satisfying P(∆Nt > 1) � o(∆t),

λ(t) � d
dt
E(Nt | Nt history)



Self-exciting Process

Given a base rate ν > 0 and excitation kernel φ ∈ L1(R)which is
non-negative, φ ≥ 0, and causal, φ(u) � 0 for u < 0.

Hawkes Process
Given base rate ν and excitation kernel φ, a Hawkes process is a
point process with conditional intensity:

λ(t) � ν +
∑
ti≤t

φ(t − ti)

� ν +

∫ t

−∞
φ(t − t′) dNt′

� ν + φ ∗ dN(t)



Hawkes Intensity Sample

Exponential kernel
For some α, β > 0 with α/β < 1 let

φ(u) � αe−βu when u ≥ 0

Figure: Sample path with exponential intensity
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Clustering and Dispersion

Figure: Sample path of conditional intensity

Figure: Points per interval of time
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Applications

Table: Some applications of the Hawkes process model

Application Authors Date

Earthquakes Ogata 1988
Neuron activity Johnson 1996
Stock trading Bowsher 2002
Corporate defaults Errais, Giesecke, Goldberg 2010
Burglaries Mohler et. al. 2011
Civilian deaths in Iraq Lewis et. al. 2012
Online ad clickthrough Xu, Duan, Whinston 2014
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Point Processes



Formal Definition of a Point Process

Random Measure
Let B be the standard Borel σ-algebra on R. A random measure
ξ on (R,B) is a kernel from the basic probability space
(Ω,A,P) to R.

A point process N is a random measure whose values are inN.

The measure must be finite on bounded sets almost surely.

Recall a kernel is a function ξ : Ω ×B→ Rwhere ξ(ω, ·) is a
measure on R for all ω ∈ Ω and ξ(·, B) is measurable in Ω for all
B ∈ B.



Random Measures

Let M(R) be the set of all measures on (R,B).

Theorem: Random element of M(R)
A random measure is a random element of M(R) endowed
with the σ-field generated by the projections πB : µ 7→ µB for
arbitrary B ∈ B.

Lemma: Finite Dimensional Distributions
Let ξ, η be random measures, ξ ∼ η iff

(ξB1 , . . . , ξBn) ∼ (ηB1 , . . . , ηBn)

for arbitrary n ∈ N and B1 , . . . , Bn ∈ B.



Factorial Process

Definition
Let N �

∑κ
k�1 δxk be a point process on (S, S). The nth factorial

process N (n) on Sn is given by

N (n) �
∑

1≤k1 ,...,kn≤κ
kidistinct

δ(sk1 ,...,skn )

When A1 , . . . ,An are disjoint,

N (n)(A1 × · · · × An) � N(A1) · · ·N(An)

N (n)(An) � N(A) (N(A) − 1) · · · (N(A) − n + 1)



Moment Measures

Definitions
Let N be a point process on S and let A ⊂ Sn .

The nth factorial moment measure is Mn � E(N (n))

The nth Janossy measure is Jn � E(1N(S)�n N (n))

Examples
The expected number of points M1 is sometimes called the
intensity. The pair correlation function can be expressed

c(s , t) � M2(ds , dt) −M1(ds)M1(dt)

When N is stationary, M1(ds) � m ds for some m > 0 and
c(x , y) � c(x − y) depends only on the separation.



Janossy Measures as Probability Measures
Lemma
For a partition A1 , . . . ,An of S,

P(NA1 � n1 , . . . ,NAk � nk) � n1! · · · nk !Jn(An1
1 × · · · × Ank

k )

Proof
Take expectations of both sides of the identity∫

An1
1 ×···×A

nk
k

1{NS�n}dN (n) � n1! · · · nk !1{N(A1)�n1 ,...,N(Ak )�nk}

If Jn is absolutely continuous, its density is the likelihood function

Jn(ds1 , . . . , dsn) � L(s1 , . . . , sn) ds1 · · · dsn

≈ P{N is exactly the points sk }



Hazard Rate Techniques



Likelihood and Hazard Rates
Theorem
Let N be a point process with conditional intensity λ. The
likelihood of N on [0, T] is given by

log L(t1 , . . . , tn) �
n∑

i�1
λ(ti) −

∫ T

0
λ(u) du

Proof

Let pn(t) � P(tn � t | t1 , . . . , tn−1). Then λ(t) � pn(t)
1−

∫ t
tn−1

pn(u) du

so pn(t) � λ(t) exp(−
∫ t

tn−1
λ(u) du). Finally then,

L � p1(t1) · · · pn(tn)(1 −
∫ T

tn
pn+1(u) du)

For a Poisson process, the likelihood is L0(t1 , . . . , tn) � mn e−mT

18



Maximum Likelihood Estimation

One can fit φ to realized data using the maximum likelihood
estimate on L. Popular parameterizations are
exponential-polynomial φ(t) � ∑n

k�1 ak tk e−αt and power-law
φ(t) � K

(c+t)p

Figure: Fitted intensity for earthquakes near Tohoko Japan, Ogata
1988
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Existence and Uniqueness
Theorem
There exists a unique point process N satisfying the Hawkes
process condition

λ(t) � ν +
∫ t

−∞
φ(t − u) dNt

Proof
Existence: start with the Poisson process and introduce a new
probability measure on M([0, T]) using the likelihood ratios
L/L0 as the Radon-Nikodym derivative.

Uniqueness: the conditional intensity determines the
likelihood which determines the Janossy measures which
determines the finite dimensional distributions. 20



Unconditional Intensity

Let N be a stationary Hawkes process. Then M1(dt) � m dt,
and m � E(dNt) � E(E(dNt | history)) � E(λ(t)) is the
unconditional intensity.

E(λ(t)) � ν +
∫ t

−∞
φ(t − u) E(dNu)

m � ν +

∫ t

−∞
φ(t − u)m du

m �
ν

1 −
∫ ∞

0 φ(u) du

Necessary conditions: ν > 0 and r :�
∫ ∞

0 φ(u) du < 1. Call r the
branching ratio.
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Correlation function

For a stationary, regular process

M2(ds , dt) � E(dNs dNt)
� mδt−s ds + (c(t − s) + m2)ds dt

Conditioning with s < t we find

E(dNs dNt) � E
(
dNs E(dNt | Nt history)

)
� E(dNs λ(t) dt)

For h > 0 let t � s + h

c(h) � νE(dNs) +
∫ s+h

−∞
φ(s + h − u)E(dNs dNu) − m2

� mφ(h) +
∫ h

∞
φ(h − u)c(u) du

This shows c satisfies a Wiener-Hopf equation, and so m and c
uniquely specify ν and φ.
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Transform Techniques

Exponential Kernel
Take φ(t) � αe−βt and let ĉ be the Laplace transform of c.
Taking transforms of the last equation

ĉ(s) � mφ̂(s) + φ̂(s)(̂c(s) + ĉ(β))

Solving for ĉ

ĉ(s) �
αm(2β − α)

2(β − α)(s + β − α)
We recognize this as the transform of

c(u) � Ke−(β−α)|u | with K �
αm(2β − α)

2(β − α)
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Exponential Kernel is Markov

For an exponential kernel, rewrite the intensity equation

λ(t + h) � ν + e−βh(λ(t) − ν) +
∫ t+h

t
αe−β(t+h−u) dNu

In the limit h → 0

dλ � −β(λ − ν) dt + α dNt

To go the other way, use Ito’s formula.

This shows the distribution of (dλ(t), dNt) is determined
entirely by (λ(t),Nt) so (λ,N) is Markov.
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Branching Process Techniques



Clusters

Cluster Process
Let the center be a point process Z and let the clusters be a
family of independent point processes C(u) indexed by R. For
a realization Z �

∑κ
i�1 δti a realization of the cluster process N

is N � Z ◦ C(u) �
∑κ

i�1 C(ti)
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Branching Process
Branching Process
Given an immigrant process Z and branching processes C(u),
inductively define

N0 � Z, N1 � N0 ◦ C(u) , N2 � N1 ◦ C(u) , . . .

A branching process is given by

N � N0 + N1 + N2 + . . .

� Z + Z ◦ C(u) + Z ◦ C(u) ◦ C(u) + . . .

Figure: Branching structure and realized points 27



Branching Representation of Hawkes Process
Theorem
A Hawkes process is a branching process whose immigrants
Z are a Poisson process with constant intensity ν and whose
branching process C(u) is a Poisson process with intensity
φ(· − u).

Proof
The sum of independent Poisson processes is Poisson with a
summed intensity. Since φ is causal, a point in (t , t + dt) is an
immigrant or the descendent of points prior to t. The
summed intensities are λ(t) � ν +∑

tt≤t φ(t − ti) as desired.
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Stability of Hawkes
Theorem
Let N be a Hawkes process. N([a , b]) < ∞ almost surely for
all [a , b]

Proof
Let D(u) be all decendents from a point at u. The number of
points is a Galton-Watson, so E(D(u)(R)) � 1

1−r < ∞. Let
pt(a , b) � P(D(t)[a , b] > 1) and let S �

∑
ti∈Z pti (a , b).

E S �

∫
R

νpt(a , b) dt ≤
∫
R

νED(t)([a , b])

� ν

∫ b

a
ED(t)(R) �

ν(b − a)
1 − r

< ∞

If S < ∞, then by Borel-Cantelli converse, only finitely many ti

have descendents in [a , b]. Since N � Z ◦ D(u), we’re done. 29



EM Estimation

The idea is to use the EM algorithm to determine the hidden
branching structure. Let p0i be the probability event i is an
immigrant and pi j the probability that j is a direct descendent
of i. Suppose φ and ν are parameterized by θ̂.

} E-step Estimate the pi j by

p0 j �
ν

ν +
∑

i< j φ(t j − ti)
pi j �

φ(t j − ti)
ν +

∑
i< j φ(t j − ti)

} M-step Choose the parameters θ̂ to maximize

n∑
i�0

n∑
j�i+1

pi j log L(i → j | θ̂)
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Functionals

Probability Generating Functional (PGFL)
Let N �

∑κ
k�1 δti and measurable f : R→ (0, 1]. The

probability generating functional is

GN[ f ] � E
κ∏

i�1
f (ti) � E

(
exp

∫
R

log f dN
)

For a Poisson process intensity measure µ the pgfl is
exp

∫
R
( f − 1) dµ. The PGFL uniquely determines the law of N .
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Branching and Cluster Process

Let N be a cluster process and let GC[ f | s] the PGFL for C(s).
Let C(s) �

∑κs
i�1 δt(s)i

and let N �
∑κ

i�1 si

GN[ f ] � EE
©«
κ∏

i�1

κsi∏
j�1

f (t(si)
j )

������ Nª®¬
� E

κ∏
i�1

GC[ f | si]

� GZ[GC[ f | ·]]

Let H[ f | s] be the PGFL for the descendents starting at s, and
Hn[ f | s] for the first n generations

Hn[ f | s] � f (s)GC[Hn−1[ f | ·] | s]
H[ f | s] � f (s)GC[H[ f | ·] | s]
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Functional Equations

The PGFL for the Hawkes process is G[ f ]where

G[ f ] � exp
∫
R

(H[ f (· − t)] − 1)ν dt

Hn+1[ f ] � f (0) exp
∫ ∞

0
(Hn[ f (· − t)] − 1)φ(t) dt

H[ f ] � lim
n→∞

Hn[ f ]

Judiciously choosing f we get functional equations for
interesting quantities. For example let D(s) be distribution for
the cluster length

D(x) �
{

exp(−r +
∫ x

0 D(x − u)φ(u) du) x ≥ 0
0 x < 0
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Expansions of the PGFL

We can expand the PGFL in terms of moment measures

G[ f ] �
∞∑

n�0

1
n!

∫
Rn

n∏
i�1

f (ti)Jn(dt1 , . . . , dtn)

G[1 − g] � 1 +

∞∑
n�0
(−1)n 1

n!

∫
Rn

∏
g(si)Mn(ds1 , . . . , dsn)

From this and the functional equation we get functional
equations for the moments

M1(A) � νδ0(A) + ν
∫

M1(A − s) ds

M2(A × B) � M1(A)M1(B) +
∫
R

M2(A − s , B − s)φ(s) ds − δ0(A)δ0(B)
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Martingale Techniques



Compensator

Martingale representation
LetHt be a filtration representing the history of a point
process Nt . There is a previsible, monotonic process At

adapted toHt called the compensator such that Yt � Nt − At is
a martingale. For a Hawkes process, Yt � Nt −

∫ t
0 λ(u) du

Proof
Let tn be the stopping time for the nth point, and let

At �

∞∑
n�1

∫ (tn−tn−1)∨(t−tn−1)

0

Gn(du | Hn−1)
1 − Gn(u− | Hn−1)

1t≥tn−1

At this point its a calculation to verify Nt − At is a martingale,
and previsible, and that the nth term is

∫ t∨tn

t∨tn−1
λ(t) dt
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Prediction

Every Ht adapated martingale can be written
∫ t

0 h(u) dYu for
some previsible h. We can sometimes use this to build “filters”
for interesting quantities.

Let ψ(t) satisfy ψ(t) � φ(t) + φ ∗ ψ(t). Then it can be shown

λ(t) � ν +
∫ t

0
ψ(t − u)ν du +

∫ t

0
ψ(t − u) dYu

So, for example

E(λ(t) |Hs) � ν +
∫ t

0
ψ(t − u)ν du +

∫ s

0
ψ(t − u) dYu
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Simulation



Random Time Change

Theorem: Simple Process with Continuous Compensator
Let N be aHt adapted point process with compensator
Λ(t) �

∫ t
0 λ(u) du. Under random time change t 7→ Λ(t)

Ñ(t) � N(Λ−1(t))

is Poisson with unit rate.

Conversely if A is a.s. finite, continuous, monotonically
increasingHt adapted random process, and Ñ is a unit
Poisson process, then N(t) � Ñ(A(t)) has compensator M(t).

To generate point tn given the historyHt , generate E← Exp(1),
and let tn solve E �

∫ tn

tn−1
λ(u) du
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Thinning

Key observation: a 1d Poisson process with variable intensity
can be simulated with a 2d Poisson process with constant
intensity, rejecting points above the graph of the intensity

Figure: Thinning a Poisson process

40



Ogata’s modified algorithm

Set P � {}, t ← 0
while t < T do

M ← λ(t + ε)
Generate E← Exp(M), U ← Unif(0,M)
t ← t + E
If U ≤ λ(t) then P ← P ∪ {t}

end while
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Extensions



Multivariate Hawkes

The multivariate Hawkes process is a point process on
R × {1, . . . , n} with base rate ®ν and excitation kernel matrix
Φ(t) � (φi j(t)). The φi j must be non-negative and causal. The
intensity dynamics are

λi(t) � νi +

n∑
j�1

∫ t

−∞
φi j(t − u) dN j(t)

} The process is stable when
∫ ∞0 Φ(t) < 1

} Can be used to model dependence in a network



Other extensions

} Marked point process: Each point ti is associated with an
i.i.d. random variable Yi ≥ 0 and the intensity formula is

λ(t) � ν +
∑
ti≤t

Yiφ(t − ti)

The Yi are marks, and represent magnitude or impact of a
point.

} Non-linear Hawkes: The intensity dynamics are given by

λ(t) � h

(
ν +

∑
ti≤t

φ(t − ti)
)

Common choices for h are h(x) � max(0, x) and
h(x) � exp(x). Here φ can be negative, so events can
display inhibitory behavior.
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