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1 OVERVIEW

In this survey, we examine some consequences of the Karlin-McGregor the-
orem first proved in [KM59]. The Karlin-McGregor theorem is to provide an
expression for the transition kernel of a set of Markov processes which stop in
the case they are ever coincident. We use the formula to analyze the asymp-
totic probabilities of no collision in the case of Brownian motion, and we ana-
lyze the related process which is conditional on no collisions.

2 MAIN THEOREM

Consider a time-homogeneous Markov process on () with transition kernel
pi(x,dy). For n € N, let X; = (X},...,X/") be the Markov process on Q)"
formed by taking n independent copies. The kernel for X; is given by 714 (x, dy) =

H?:l pf(xi/ dyl)
We say X; is coincident at time t if two of the independent process com-

ponents have the same value, that is if Xi = X{ for some i # j. Our ultimate
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2. MAIN THEOREM

aim is to analyze the paths which are never coincident for any time ¢, which
is informally to say they never collide. Let S;, be the symmetric group on n
letters. Any permutation ¢ € S;, acts on ()" by permuting the coordinates
o (x1,.--, %) <= (Xg1,---,%on ). Let C C OO be the set of x with at least one
pair of coincident coordinates, C = {x € S | x; = x; for some i # j}. Clearly
C is closed, so we can define the stopping time T = inf{t | X; € C}.

2.1 PROPOSITION. Let A*(x,E) be the event that Xg = x, X; € E and X; is never
coincident for 0 < s < t. Consider the quantity

pe(x1,dy1) ... pi(xn,dyr)
i (x,dy) = : : = ) sgno m(x,ody) (1)
pe(xr,dyn) .. (e dy)| O
The following relation holds
Z sgno Pr(A*(x,0E)) = /n;‘(x,dy) (2)

oceS, E

Proof. The idea of the proof is to use the strong Markov property, the reflection
principle on paths with collisions, and the antisymmetry of 77/ (x,dy). Using
linearity and the fact Pr(A(x, E)) = [; 7t(x,dy)

Y sgnoPr(A(x,0E)) = )_ sgno /m(x,(fdy) = /n?(x,dy) (3)

oESy, oESy fa £

Since A*(x,E) = A(x,E)N{t > t}, consider B(x,E) = A(x,E)\ A*(x,E) =
A(x,E) N {7 < t}, which is the set of paths which stat at x, end up in E, but
have at least one collision. The proposition is equivalent to the fact

Y sgnoPr(B(x,0E)) =0 (4)

oeS,
since Pr(A(x,E)) = Pr(A*(x,E)) +Pr(B(x,E))

For each coincident point x € C we can associate a unique transposition
A = (i,j) with i < jsuch that all of the x1, ..., x;_ are distinct but x; = x;. This
allows us to decompose C into disjoint sets C = [[yc5 Cy where C, consists
of all the points associated with A and A is the set of all transpositions. Paths
starting at x € C) can be reflected via A to give a one-to-one correspondence.
Thus the kernel satisfies 7;(x, E) = m:(x, AE) for all x € Cy

Let ®(s) = Pr(t < s). Using the strong Markov property we can condition



paths on T and X to write

Pr(B(x,E)) = [ d(s) [ mslax,y)mi—s(y, E) dy (5)
[0,t] C
Therefore
Y sgnoPr(B(x,0E))= ) Y. sgna/dq)(s) /ns(x,y)m,s(y,aE) dy
ceS, oES, AEA é/\
=—Y ) sgn)ur/d@(s)/ns(x,y)nt,s(y,AaE) dy
TESy AEA Ca
=— ) sgnoPr(B(x,0E))
oEeSy
Since the expression on the left is equal to its negative, its zero. O

Now specialize to the case that ) C R and suppose whenever X; = a and
X; = c then for every b € [a,c] N Q) there is a u € [s,t] such that X, = b
almost surely. We call this the intermediate value property. Any process, such as
a diffusion, which is pathwise continuous satisfies this property. However, this
property also shared when () is discrete but X; transitions only to neighboring
sites, such as is the case for a birth and death process.

Consider the Weyl chamber W = {x € R | x; > xp > -+ > x,}. If X;
satisfies the intermediate value property and it starts in W but ends outside,
then it must cross C at be coincident. Note that copies of the Weyl chamber
partition the whole space and R" \ C = [[,cs, W, so each non-coincident
process is restricted to its copy of the Weyl chamber.

2.2 COROLLARY (Karlin-MacGregor). Suppose X; satisfies the intermediate value
property, and that x €¢ W

Pr(A*(x,E)) = [ mi(xdy) ©
ENW

Proof. First Pr(A*(x, E)) = Pr(A*(x, ENW)) since, by the intermediate value
property, a path starting inside W and ending outside W must have a coinci-
dent point. Assuming E C W, similar reasoning shows Pr(A*(x,0E)) = 0 for
o # 1 since ¢E is disjoint from W. Therefore all the terms on the left hand
side of (2) are zero except for o = 1. O

This corollary shows that 71} is the kernel for the stopped Markov chain
X; = Xiar with x € W. Its trivial to extend this kernel to the boundary
OW C C since points there remain constant for all time with probability 1.



3. ASYMPTOTICS FOR NON-COLLIDING BROWNIAN MOTION

In the case of a diffusion, let the function f(t,y) = p¢(x,y) be the funda-
mental solution of the generator L subject to f(0,y) = . In this case, equation
(6) can be viewed as an application of the method of images where the solu-
tion f*(t,y) = Y_sgno f(t,oy) satisfies f(t,y) = 0 on the boundary oW.

3 ASYMPTOTICS FOR NON-COLLIDING BROWNIAN MOTION

Now let’s specialize to the case that X, is Brownian motion in R” and where
the transition of each component is given by

(v — x)z)
x,y) = exp | ————=—
prlxy) = —— p< 57 (7)
Thus, in the Karlin-MacGregor determinant (6), its possible to factor e Vi/2
)
from each row and ¢~ %1’ from each column to get an expression
77 (31, yy) = (2708) 2 IR 2 9172 et g ®

In what follows we’ll make use of the Vandermonde determinant, given by

x{‘_l x{‘_z oox 1
L X2 x 1 n
2 2 —o(k
A =2 T T = Eosene [T =TT — xy)
: : P €Sy, k=1 i<j
e U O |
(9)
Also, with a slight abuse of notation, let
n—1
Ap=An-1,n-2,...,1,00= J[ G-)H=]]K (10)
0<j<i<n—1 k=1

3.1 PROPOSITION. As t — oo, the law for noncolliding Brownian motion X{ con-
verges to

N 1 a2 _illi2
Furthermore
Pr(T > t) ~ CA(x) t "= 1)/4 (12)

Proof. First we show the probability that any y; > t!/2€ is negligible for any
small € > 0. The probability that the stopped diffusion satisfies y; > t1/2+¢



is certainly less than the probability the normal diffusion does. And, for fixed
x and large enough ¢, the probability a diffusion starting at x ends up at
y > t1/27€ is less than the probability for a diffusion starting at o ends at
y > t1/2+¢ for 0 < ey < €. So we can use the sum bound to find

nexp(—3t2)
3t€o

. (13)

t1+€g

pr(| J{x;i > /2y < N /exp(fzz/Zt)dzg

its clear this expression goes to 0 much faster than ¢~ 7("=1)/4,

Now analyze the asymptotics of each term in (8). For fixed x, e~ II* 72t 0
as t — o0. So the key is to approximate the last term dete*?Vi /t. Consider an
entry-by-entry approximation by the Taylor series

N-1 xky;{

MN(tr xry) = (Z kl!tk ) (14)

k=0

ij
Using multilinearity row-by-row, its not hard to see det My (¢, x, y) = dete™/ ity

O((y/t)N). It stands to reason that for N large enough, det My has the right
asymptotics when maxy; < t1/2F€.

In fact we’ll take N = n which is the smallest N with det My # 0 since for
any smaller N, the columns are collinear. Observe first that

X 2 o 1 ity it
v -7 = ce 1
RV N S s
2 i xy 1 = = T
M, = | DT 2y 2 " t t (15)
X;;71 9‘272 1 1 Y2 ce Yn
-1 (w28 - *n 1 1 ... 1

The first term has common factors in each row, the second has common factors
in each colmumn. Pulling those factors out leaves a Vandermonde matrix V(x)
in x and the transpose V()T in y.

n—1
—n(n— 1
detM, = t—"(=D/2T] 17 detV(x) det V()T
k=1 (16)

= D27 () A(y) /B

Thus combining (8) with the approximation (16) yields (11). Note that det i/t
is an analytic function which also vanishes whenever A(y) = 0, since in that
case two columns of the determinant are collinear. Therefore the Taylor se-
ries in i/t must match the polynomial det M, up to the degree of M,,. Thus



4. DOOB’S H-TRANSFORM

dete*¥i’t = det My, + o(t "("+1)/2), which heuristically justifies taking N = n.
Now integrate (11) over W to get

Pr(t > t) = C / 2 (x) Ay )e VP2 gy

W
_ Ct—n2/2A(x) /A(Z\/E)E_l‘zl‘z/z t—n/Z dz (17)
w
= Ct*”(”*l)/‘lA(x) /A(z)e*HZHZ/Zdz
w
This is the same as (12), since the last integral is a constant. O

A proof which uses Shur functions to justify the asymptotic approximation
rather than handwaving can be found in [Gragg], which also provides the
values of the constants.

3.2 COROLLARY. Conditional on no collision up to time t, the distribution of r =

X . . . . .
% converges in measure to a Bessel process at time one in n(n + 1) /2 dimensions

starting at o.

Proof. Integrate the radial part of (11) over the set ||y||/+/t = r to get, after a
change of variables,

Pr (||| = 1V, 7> ) = (70D AN () 2D /2 / A(z) dz
Jzl=1

(18)
The integral on the right is constant, so the conditional distribution formed by
dividing by (12) is

Pr (X7 /VE=r| T > ) = Co /22 (19)

This matches the distribution of a Bessel process at time 1 O

4 DOOB’S H-TRANSFORM

A function h is harmonic for a Markov process M; if h(x) = Ey h(M;) for all ¢,
which is to say #(M;) is a martingale. Note that if Lf = % E[f(Xt)] o is the

infinitesimal generator of M;, then Lh = 0. We can use harmonic functions to
create new Markov processes.

4.1 PROPOSITION. Let M; be a Markov process on Q. Let Q) be the set where h(x) > 0

and let g;(x,dy) = %pt(x, dy).



1. q; defines a kernel for a time-homogenous Markov process M)!
2. The process M has generator L' = h='Lh

3. Suppose h grows only polynomially fast at infinity, and that M; is a diffusion
specified by

dM; = O'(Mt)dBt + b(Mt)df
then M} is a diffusion with modified drift term

AM] = o(M;)dB; + (b(M;) + o(M;)oT (M;)V log (M) dt

Proof. Consider q¢(x, B) = h='(x) [3 h(y)p:(x,dy). Since its just the product of
measurable functions, the map X — qt(x B) is measurable. Treating the ex-
pression h(y)/h(x) as a Radon-Nikodym derivative, the map B < g;(x, B) isa
measure which is absolutely continuous to p; on Q. Furthermore g; is a prob-
ability measure since qt(x Q) = h Lx)E [h(Mt)] = 1. Let p; act on bounded
functions f by Pif = E,[f = Jo f(y)pi(x,dy). The Markov property is
equivalent to the fact that Pt satlsﬁes the semigroup property P;s = P;Ps. The
operator Q; is given by

Q:if = h(x / F()h(y)pe(x, dy) = h~"Pih (20)

and therefore Q;Qs = (W™ Pih)(h~'Psh) = h™ 1Py sh = Qi also satisfies the
semigroup property. This shows (1).

From the relation Lf = %Exf(Mt)‘th = %Pt‘t*O, it follows that th =
h~'Lh , which shows (2). For a diffusion dM; = o(M;)dB; + b(M;)dt the gen-

erator is given by

1 9
L=3 Zlfaxa +Z Fr (21)

where the matrix (a;;) = coT. The growth condition on / permits us to take

certain derivatives under the integral sign

Ll oh af

0
Lrf= fz ”axax Z l]axE{x +Z i 9x; +h2b +f2b18x

:th+th+thVf



4. DOOB’S H-TRANSFORM

Since h is harmonic, this is equivalent to the operator equation

L :h_th:L+aV7h~V (22)

This is the generator for a diffusion with augmented drift term, which justifies
(3)- m

One source of harmonic functions / are events A which are invariant un-
der the time-shift operator A = 6; ! A. Then we can let h(x) = Eyl4(M;).
This expression on the right is independent of t by the strong Markov prop-
erty and the fact A is time-shift invariant. The function / is harmonic by the
tower property of conditional expectations. In this case, q; has a natural in-
terpretation as the transition kernel for the Markov process conditional on
A.

Pr(A | Mt = y,MO = x) PI’(Mt =Yy | MO = X)
Pr(A| My =x)

Pr(Mt:y‘MOleA):

_ hy)pi(x, dy)
h(x)

The equivalence Pr(A | My =y, My = x) = Pr(A | My = y) = h(y) is justified
by the Markov property and time-shift invariance.

For a closed set K let T be the hitting time T = inf{t{|M; € K}. Then
for U C K the events M; € U are time-shift invariant. Thus if we can find
harmonic functions / for the stopped Markov chain which are 0o on U and 1 on
K\ U, the h-transform gives the stopped Markov process which conditionally
never hits U.

4.2 PROPOSITION. Let X; be the n-dimensional Brownian motion. Up to a positive
multiplicative constant, the function h(x) = A(x) is the unique positive harmonic
function for the semigroup X; on the Weyl chamber W which vanishes on the bound-
ary.

Proof. Clearly h is positive on W since its the product of positive terms, and
h = 0 on dWsince since é(x) vanishes whenever two components of x are
coincident. The infinitesimal generator for X; is the same as for X;, and is

equal to V2 = 1% %. Thus to show that /1(x) is harmonic with respect to

X} its sufficient to show A(x) is harmonic in the classical sense.
Calculating, we get the expression

n

x](:(k)—l

| —

VA = Y Y sgno (o) — D))~ 2)

j=10€5,

(23)

N

X k=1

~

The terms with o(j) = 1 or ¢(j) = 2 are zero. Otherwise, the terms cancel



in pairs. Note that the lowered exponent of x; is | = ¢(j) — 3. Also [ is the
exponent o (i) — 1 of x; for some unique i. This can be seen by solving i =
o~ 1(c(j) — 2). So consider the term associated with ¢/ = Ac and i where
A = (i,]) is the transposition. For k ¢ {i,j}, the exponents of x; are the same
since o(k) = ¢'(k). However the lowered exponent ¢’(i) — 3 of x; and the
exponent ¢’(j) — 1 of x; both equal to I. Since sgnc’ = —sgno, one term
cancels the other. O

The h-transform of the stopped diffusion X; with respect to this function
yields a process Y; = X;”. The transition kernel given by the Johansson for-
mula

_ U AW Pt -yl 2t ey i/t
%(x,dy) - (27‘[t)”/2 (x)e e dete™i (24)

If we apply the same approximation as in (11), and consider the distribution
ofz=y/ V't we get the Ginibre formula

A(Z)zefquz/z

(27)"72A, (25)

plz

Its tempting to interpret this as the process formed from n Brownian motions

conditional on never having a collision. However some care must be taken

since it follows from (12) that the event {T = oo} has probability 0. We may

instead condition on the event that || X¢|| = r occurs before a collision happens,
and then take the limit as r — oo.

We can now write down Y; equations as a stochastic process using propo-

sition 4.1, using the fact that ag—fj‘) = Zj %
i i—Aj

dyj =Y — LI + dB; (26)
FYi-y]

The drift term adds a repulsion between between the ith and jth component
whose strength increases as 1/r as they get closer. This is called Dyson’s Brow-
nian motion. Its an interesting coincidence that the eigenvalues for a Hermi-
tian matrix whose entries are independent Brownian motion also follows the
same process.
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