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This is a study of the probability generating functional (p.g.fl.) and related objects, which are
to random measures as the probability generating function is to random variables. The p.g.fl.
uniquely specifies the distribution of a random measure, but its much more amenable to algebraic
and analytical techniques than finite dimensional (fidi) distributions.

1 Laplace transform

A quick review of some Laplace transform facts.

1. Definition (Laplace transform): The Laplace transform of a nonnegative random variable X for
s > 0

LX(s) = E(e−sX) =

∫ ∞
0

e−sx µ(dx)

where µ is the law of X, and µ[0, x] = P(X ≤ x). For a nonnegative random vector, we generalize
the definition to s ∈ Rd+ to be LX(s) = E(e−s·X)

For example, for X ∼ Poisson(λ),

∞∑
k=0

λk

k!
e−ske−λ = exp(λe−s − λ) = exp(λ(e−s − 1))

The Laplace transform is essentially the same as the characteristic function ΦX(s) = E(eisX)

since LX(s) = Φ(−is)). However, for nonnegative random variables, Laplace transforms have the
advantage of being positive, monotone, convex and analytic. We’ll content ourselves with proving
LX is smooth.

2. Claim LX ∈ C∞(0,∞). Moreover for n ∈ N and s > 0

dn

dxn
LX(s) = E(Xne−sX) =

∫ ∞
0

xne−sx µ(dx)

Proof. Calculate L(s+h)−L(s)h =
∫∞
0

e−hx−1
h e−sx µ(dx). However since xe−xs/4 → 0 it has a maximum

C > 0, so using |ex − 1| ≤ |x|e|x|∣∣∣∣e−hx − 1

h

∣∣∣∣ ≤ exs/4x|h|
|h|

≤ Cexs/2 when h ≤ s/4

Therefore dominated convergence yields L′(s) =
∫∞
0

d
dse
−sx µ(dx) = −

∫∞
0
xe−sx µ(dx). Repeating

the argument for higher derivatives gives the desired formula.
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I learned the following argument from [Fel66], not sure what the original paper is. A similar
argument using exponential distributions instead of Poisson distributions is an exercise in [Wil61]

3. Theorem (Inversion formula) If µ is the law of X then

µ[0, x]− 1

2
µ({x}) = lim

n→∞

∑
k≤nx

(−1)k
nk

k!
L(k)
X (n)

Proof. For any x > 0 and n ∈ N

∑
k≤nx

(−1)k
nk

k!
L(k)
X (n) =

∫ ∞
0

∑
k≤nx

(nu)k

k!
e−nu µ(du)

However the expression
∑
k≤nx

(nx)k

k! e−nx is P(Y ≤ nx) where Y ∼ Poisson(nu). When x < u then

P(Y ≤ nx) ≤ P(|Y − nu| ≥ n(u− x)) ≤ Var(Y )

n2(u− x)2
=

u

n(u− x)2
→ 0

A similar argument shows P(Y ≤ nx)→ 1 when x > u.
For the case u = x, since Y is infinitely divisible write Y = Y1 + · · ·+ Yn where Yn ∼ Poisson(u)

are i.i.d.. Let Ŷi := Yi − u be the centered random variable, so that by the central limit theorem

P(Y ≤ nx) = P

(
Ŷ1 + · · ·+ Ŷn√

xn
≤ 0

)
→ 1

2

So pointwise the integrand converges to 1u<x + 1
21{x}. Therefore by dominated convergence

(dominating by 1) the integral becomes the inversion formula.

4. Corollary (Uniqueness of Laplace transforms) For non-negative random variables or vectors
X,Y we have LX = LY if and only if X ∼ Y

Proof. If X ∼ Y , the Laplace transforms are equal by definition. For random variables, if LX = LY
then the inversion formula shows they have the same law. For random vectors, we can use the
one-dimensional inversion formula and Wold’s device that s · X ∼ s · Y for all s if and only if
X ∼ Y .

2 Linear Functionals

Basically this follows [DVJ07] chapter 9.4, a lot of which comes from [Wes72]. Some of the
same material is also covered in [Kal17] chapter 2.1.

Let (S,S) be a measurable space and let BM(S) be the set of all bounded measurable functions
with bounded support in S. First we state a sort of probabilistic version of the Reisz representation
theorem, which says that random measures are equivalent to random continuous linear functionals.

5. Claim Let {ξf} be a family of random variables indexed by the elements f of BM(S). There
exists a unique random measure ξ such that

(∗) ξf =

∫
f dξ

if and only if

(i) ξαf+βg = αξf + βξg a.s. for all scalars α, β and f, g ∈ BM(S)
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(ii) ξfn → ξf a.s. as n→∞ for all sequences fn ↑ f pointwise where fn ∈ BM+(S) for all n

Proof. Its clear that (∗) implies the conditions from the linearity and monotone convergence
properties of integrals.

Conversely, for A ∈ S define ξ(A) = ξ1(A), the element of the family corresponding to the
indicator function 1A. Then (i) shows ξ is additive since 1A∪B = 1A + 1B for disjoint A,B ∈ S.
And (ii) shows ξ is countably additive. For simple functions s =

∑
i ai1Ai , we can apply (i) to get

ξs =
∑
i aiξ(Ai) =

∫
s dξ. For arbitrary measurable functions, (∗) follows from (ii) and approximating

by simple functions. Uniqueness follows from lemma 3 in “point process zoo”– finite dimensional dis-
tributions are uniquely specified by the joint distribution of integrals (ξf1, . . . , ξfn) = (ξf1 . . . , ξfn)

Don’t we need some assumption about positivity to ensure this is a positive measure? Like
ξf ≥ 0 a.s. whenever f ≥ 0.

Now we use functionals to define a generalization of Laplace transforms suitble for analysis of
random measures.

6. Definition (Laplace functional): The Laplace transform of a random measure ξ is given for any
f ∈ BM+(S) by

Lξ[f ] = E[e−
∫
f dξ] = E[e−ξf ]

Sometimes its useful to employ the conditional Laplace transform with repect to some σ-algebra F

Lξ[f | F ] = E(e−ξf | F)

in which case Lξ[f ] = E(Lξ[f | F ])

7. Lemma (Continuity) Consider a sequence fn with supx∈X |fn(x)− f(x)| → 0 (in other words, fn
converges pointwise uniformly to f in X). Then L[fn]→ L[f ] if any of the following hold

(i) fn ↑ f pointwise

(ii) ξ is totally bounded

(iii) there is a bounded Borel set containing the support of every fn

Proof. By condition (i) and monotone convergence, ξfn → ξf for each realization of ξ and hence
almost surely. Using condition (ii) and bounded convergence we can make a similar argument
since the fn are uniformly bound by some constant (for large enough n, the functions fn are close
to f which is bounded). If bounded B ⊃ supp fn for all n Using condition (iii) we can consider the
random measure defined by ξ̂(A) = ξ(B ∩A). This random measure is totally bounded, and also
ξ̂fn = ξfn since fn = 0 outside of B. So this reduces to case (ii).

In any case, given ξfn → ξf alomst surely, bounded convergence implies E(exp(−ξfn)) →
E(exp(ξf)), which is the desired result.

8. Theorem (Laplace Functional Uniqueness) Let Λ[f ] be defined for all f ∈ BM+(S). Then Λ = Lξ
is the Laplace transform of a random measure ξ on S if and only if

(i) For every finite family f1, . . . , fn ∈ BM+(S) the function Λ[s1f1 + · · · + snfn] is the Laplace
transform of some proper random vector (ξf1 , . . . , ξfn)

(ii) For every sequence f1, f2, · · · ∈ BM+(S) with fn ↑ f pointwise, Λ[fn]→ Λ[f ]

(iii) Λ(0) = 1

Moreover when the conditions are satisfied, the functional L uniquely determines the distribution
of ξ
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Proof. If Λ is the Laplace transform of a random measure ξ so that Λ = Lξ, then let ξf := ξf , and
note this is a random variable for all f ∈ BM+(S). Then (i) follows from the properties of of Laplace
transforms of random variables, and (ii) follows from lemma 7 and (iii) follows from the definition.
Furthermore, if there is a measure ξ′ such that Lξ′ [f ] = Λ[f ] = Lξ[f ] for all f ∈ BM+(S) then
the fidi distributions (ξf1, . . . , ξfn) ∼ (ξ′f1, . . . , ξ

′fn) are the same, by the uniqueness of Laplace
transforms of random vectors (theorem 4). But this is a necessary and sufficient condition that
ξ ∼ ξ′ as random measures.

What remains to show a random measure ξ exists so that Λ = Lξ whenever (i)-(iii) are satisfied.
Condition (i) implies that the Kolmogorov consistency conditions are satisfied. Specifically, the
sum

∑
sifi =

∑
sπifπi is invariant under any permutation π. The marginals are consistent because

Λ(s1f1 + · · ·+ snfn) corresponds to the Laplace transform of a random vector (ξf1 , . . . , ξfn), which
we write as L(ξf1 ,...,ξfn )

(s1, . . . , sn). For consistency we wish to show that

L(ξf1 ,...,ξfn )
(s1, . . . , sn−1, 0) = L(ξf1 ,...,ξfn−1

)(s1, . . . , sn−1)

But this is clearly true because Λ(s1f1+ · · ·+sn−1fn−1+0 ·fn) = Λ(s1f1+ · · ·+sn−1fn−1). Therefore
by Komolgorov’s extension theorem, there is a common probability space where the ξf are random
variables for all f ∈ BM+(S).

Next we will show that f 7→ ξf is a continuous linear functional, which, by claim 5, implies
that ξf = ξf for some measure ξ. For linearity, ξf3 = αξf1 + βξf2 iff for all s1, s2, s3 ∈ R+ we have
s1ξf1 + s2ξf2 + s3ξf3 ∼ (s1 +αs3)ξf1 + (s2 +βs3)ξf2 . But this is equivalent to the Laplace transforms
being equal, which occurs only when

Λ(s1f1 + s2f2 + s3f3) = Λ((s1 + αs3)f1 + (s2 + βs3)f2)

Now this is certainly true whenever f3 = αf1 + βf2 which verifies condition (i) of claim 5.

To show condition (ii) in claim 5, note that when fn ↑ f then ξf−fn converges in distribution to
0 and hence in probability. But then by linearity, ξfn → ξf in probability. The linearity of f 7→ ξf
and the positivity of the measure implies that ξfn is increasing when fn is increasing. This means
that ξfn converges almost surely to some limit in [0,∞]. But since ξfn converges in probability the
limit must be ξf .

For point processes, it is sometimes more convenient to consider the following functional which
is an analogue to the probability generating function.

9. Definition (Probability generating functional): For a point process N which is almost surely
finite, and for measurable g ≥ 0, the probability generating functional is given by

Gξ[h] = E exp(ξ log h) = Eξ
∏
k≥1

h(xk)

where {xk}k≥1 represents a realization of the point process ξ =
∑
k δxk , and the expectation is

taken over all realizations.

One way to ensure the product is well defined is to restrict h to the class of measurable
functions h : X → (0, 1] where h is 1 outside of some compact set. Then any realization of ξ given
by {xk}k≥1 has only finitely points where h(xk) 6= 1, and also the product is always positive. Note
that Gξ[h] = Lξ[− log h], and the condition that − log h ∈ BM+(S) is the same as the conditions
above on the range of h. An alternative way to ensure the product exists is that

∫
| log h(x)|M(dx)

where M is the intensity measure of ξ.

From the definition its evident that the product h(x1) · · ·h(xk) is positive, monotonic and convex
in g for every realization of ξ, so the p.g.fl. must also be positive, monotonic and convex. There’s a
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variation of theorem 8 for p.g.fl.

10. Theorem Let the functional G[h] be real-valued and defined for all continuous measurable
h : X → (0, 1] which is 1 outside of a compact set. Then G is a p.g.fl. of a point process ξ if and
only if

(i) For every h of the form

1− h(x) =

n∑
k=1

(1− zk)1Ak(x)

for bounded disjoint Borel sets A1, . . . , An and zi ∈ (0, 1] the p.g.fl. reduces to the joint p.g.f.
for the integer valued random variables ξAk

(ii) for every sequence hn ↓ h poitwise, G[hn]→ G[h] whenever 1− h has bounded support

(iii) G[1] = 1

When these conditions are satisfied, the functional G uniquely determines the distribution of ξ.

3 Moment Measures and Generating Functional Expansions

This follows the development in [LP17] chapter 4 (with the theorems in [Kal17] chapter 1.2
providing context). This material is developed in a much more confusing way in [DVJ03] chapters
5.3, 5.4 and 5.5.

Given a point process ξ on S, its easy to define a point process on Sn by ξn = ξ ⊗ · · · ⊗ ξ. Given
a realization of ξ =

∑
k∈I δsk then a realization of ξn =

∑
(k1,...,kn)∈In δ(sk1 ,...,skn ). However, often it

is more convenient to exclude the diagonal sets.
So given a realization ξ =

∑
i∈I δsi where the points range over some (countable) index set I

then

ξ(n) =
∑

i1,...,in∈I
ik distinct

δ(si1 ,...,sin )

Note the sk themselves need not be distinct. However, in the case that ξ is simple then ξ(n) =

1{s1,...,sn distinct}ξ
n. Kallenberg calls µ(n) the factorial measure [Kal17]. Note that when A1, . . . , An

are disjoint then

ξn(A1 × . . . An) = ξ(n)(A1 × · · · ×An) = ξ(A1) · · · ξ(An)

When B = An

ξn(An) = ξ(A)n but ξ(n)(An) = ξ(A)(ξ(A)− 1) · · · (ξ(A)− n+ 1) = ξ(A)(n)

In particular ξ(n)(An) = 0 unless A has at least n points in it. As another example, for arbitrary
A,B ∈ S, ξ2(A×B) = ξ(A)ξ(B) but ξ(2)(A×B) = ξ(A)ξ(B)− ξ(A ∩B).

11. Definition (Moment measures): For measurable B ∈ Sn, define

Mn(B) = E(ξn(B)) moment measure

M(n)(B) = E(ξ(n)(B)) factorial moment measure

Jn(B) = E(1{ξ(S)=n}ξ
(n)(B)) Janossy measure

These are measures by the linearity and continuity of expectations. When n = 1, M(1)(B) =

M1(B) = E(ξ(B)) is just the intensity measure, which we abbreviate as M .
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For a general point process and bounded set B ∈ S we can define the local Janossy measure
Jn,B as the Janossy measure with respect to the restricted process ξB(B′) = ξ(B ∩B′). For B′ ⊃ B,
the local measures Jn,B and Jn,B′ agree on subsets of Bn, which show that the Janossy measure
really is localized. (This follows from the trivial observation that A ∩B = A ∩B′ if A ⊂ B ⊂ B′).

The Janossy measure also provides a sort of probability density function for the point process. In
particualr, if Jn is absolutely continuous with respect to the Lesbegue measure, then its derivative
jn(x1, . . . , xk) dx1 . . . dxk is the probability density there is exactly one point at each of {x1, . . . , xk}.
More generally we have

12. Lemma For a partition A1, . . . , Ak of S we have

P(ξA1 = n1, . . . , ξAk = nk) = n1! · · ·nk! Jn(An1
1 × · · · ×A

nk
k )

Proof. This follows from taking expectations of the following identity, where n = n1 + · · ·+ nk∫
1{ξS=n}1An1

1 ×···×A
nk
k
dξ(n) = n1! · · ·nk!1{ξA1=n1,...,ξAk=nk}

Observe that the integrand on the left is non-zero if and only if the first n1 coordinates in a
realization of ξ(n) are in A1, the next n2 in A2 and so forth. But, since the Ak are a partition of S,
this happens if and only if the realization of ξ consists of exactly n points, where Ak contains nk
points. This realization of ξ corresponds to n1! · · ·nk! points in the realization of ξ(n), permuting
each block of nk coordinates.

13. Corollary If ξ and ξ′ are point processes on X whose corresponding local Janossy measures
are equal Jn,B = J ′n,B for each n ∈ N then the distributions are equal conditional on being finite,
or P(η(B) <∞, η ∈ ·) = P(η(B) <∞, η′ ∈ ·). In particular if η and η′ are finite almost surely, they
have the same distribution iff they have the same Janossy measures.

14. Corollary The Janossy measures satisfy
∑∞
n=0

Jn(S
n)

n! = 1

For a random variable, the Taylor expansion of the p.g.f. at 0 is related to the probabilities, and
the Taylor expansion of the p.g.f. at 1 is related to the moments. We have a similar relationship of
the p.g.fl. to Janossy measures and factorial moment measures.

15. Claim (Expansions of the PGFL) We have the following expansions of the p.g.fl. G of a point
process ξ

G[f ] =

∞∑
n=0

1

n!

∫
Sn

n∏
i=1

f(si) Jn(ds1 . . . dsn)

G[1− g] = 1 +

∞∑
n=1

(−1)n
1

n!

∫
Sn

n∏
i=1

g(si)M(n)(ds1 . . . dsn)

Proof. Suppose the realization of ξ =
∑n
i=1 δxi with n points. Then ξ(n) =

∑
perm π δ(xπ1,...,xπn),

where the sum is over the set of all permutations. Since the product f(x1) · · · f(xn) symmetric with
respect to permutations of the coordinates we have∫

Sn

n∏
i=1

f(si) dξ
(n) =

∑
perm. π

n∏
i=1

f(xσi) = n!

n∏
i=1

f(xi)

6



Ryan McCorvie

and therefore

exp ξ log f =

∞∑
n=0

1{ξ(S)=n}
1

n!
ξ(n)

∏
i

f(si)

Taking expectations gives the first expansion.
For the second first note that

n∏
i=1

(1− g(xi)) = 1 +

n∑
k=1

(−1)n
∑

1≤i1<···<ik≤n

ξ(n)
∏
i

g(sik)

Like in the previous case, owing to the symmetry of the product g(s1) · · · g(sk) under permutations,
when ξ =

∑
δxi we can rewrite the sum in terms of the factorial measure

k!
∑

1≤i1<···<ik≤n

ξ(n)
∏
k

g(xik) =
∑

1≤i1,...,ik≤n
i1,...,ik distinct

∏
k

g(xik) = ξ(n)
k∏
i=1

g(si)

Using this and the fact that ξ(n
′) = 0 whenever the realization of ξ only has n < n′ points, we get

the identity

exp ξ log(1− g) = 1 +

∞∑
k=1

(−1)n
1

k!
ξ(k)

k∏
i=1

g(si)

Taking expectations of both sides gives the second expansion.

16. Corollary If the moment measures grow slowly enough, say M(n)(S
n) ≤ n!ck, then the

moment measures uniquely specify the distribution of ξ

Proof. The expansion converges for g < c−1/2 and therefore the p.g.fl. is uniquely determined
given the moment measures.

17. Claim For a Poisson process directed by λ the factorial moment measures are given by
M(n) = λn

Proof. By inspection from the expansion of the p.g.fl. or using the Mecke equation as in [LP17]

4 Calculations

18. Claim (i) For a Cox process ξ driven by η

Gξ[f | η] = exp(η(f − 1))

(ii) For a Poisson process with intensity µ

Gξ[f ] = exp(µ(f − 1))

(iii) For a mixed binomial process

Gξ[f | κ] = (µf)κ
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Proof. (i) As shown earlier, if κ ∼ Poisson(m) then E sκ = exp(m(s − 1)). Therefore if f =

s11A1
+ · · ·+ sn1An is a simple function for disjoint Ak and constants sk ≥ 0 and ξ is a Poisson

process driven by η

E exp(ξ log f) = E exp
∑
k≤n

log skξAk =
∏
k≤n

E sξAkk =
∏
k≤n

exp(ηAk(sk − 1)) = exp(η(f − 1))

For general f ∈ BM+(X) approximate by simple functions and use monotone convergence.
Conditioning on η gives the general result.

(ii) This is a special case of (i)

(iii) Let ξ =
∑
k≥n δsk where sk are iid chosen with law µ and n ∈ Z+. For any f ∈ BM+(X)

E exp(ξ log f) = E
∏
k≤n

f(sk) =
∏
k≤n

E f(sk) = (µf)n

So conditioning on the value of κ gives the result.

Does this mean we’ve proved the existence of a Poisson or even Cox process? The standard
construction is just mixed binomial where the number of points has a Poisson distribution, which
is intuitive as a finite number of random variables.

So let’s calculate the p.g.fl. of a shot noise process. In this case ξ is a Cox process on R where
the intensity measure is given by

∑
i Yig(x− xi) dx where the xi are Poisson with intensity ν and

the Yi are i.i.d. random variables. Therefore by (i)

Gξ[f | Yi, xi] = exp

(∑
i

−Yi
∫ ∞
0

(1− f(u+ xi))g(u) du

)

Taking expectations over the Yi and recognizing the p.g.fl. is the product of Laplace transforms of
i.i.d. Y

Gξ[f | xi] =
∏
i

LY
[∫ ∞

0

(1− f(u+ xi))g(u) du

]
Taking expectations over the xi again using part (i) above

(∗∗) Gξ[f ] = exp

(∫
1− LY

[∫ ∞
0

(1− f(u+ x))g(u) du

]
ν(dx)

)
Now let’s turn to cluster processes. See [Wes71] for more examples.

19. Claim (i) For a cluster process ξ with center process ξc on S and cluster members ζ on T
indexed by S (with a slight abuse of notation) let Gc := Gξc be the probability generating
functional of ξc and (again slightly abusing notation, conflating kernels with conditionals) let
G[· | s] := Gζ(s,·) be the probability generating functional of η(s, ·). Then

Gξ[f ] = Gc[G[f | s]]

(ii) If M c
(n) are the moment measures of the center process and Nx

(n) are the moment measures of
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the clusters, then the first two moment measures of the cluster process are given by

M(A) =

∫
S

Nx(A)M c(dx)

M(2)(A×B) =

∫
S

Nx
(2)(A×B)M c(dx) +

∫
S2

Nx(A)Ny(B)M c
(2)(dx dy)

(iii) For a Poisson cluster process ξ with cluster center intensity λ and cluster members ζ, let
G[f | s] := Gζ(s,·)[f ] be the the probability generating functional of ζ(s, ·). Then

Gξ[f ] = exp(λ(G[f | s]− 1)) = exp

(∫
(G[f | s]− 1)λ(ds)

)
(iv) For a Neyman-Scott cluster process ξ with Poisson cluster process given by intensity λ and

with i.i.d clusters members given by a mixed binomial process with parameters κ and µ. Let
g(s) = E sκ be the p.g.f. of κ and let τu be the translation operator so that τuf(s) = f(s− u).
Then

Gξ[f ] = exp(λ(g(µ(τsf)− 1))) = exp

(
−
∫

1− g
(∫

f(t+ s)µ(dt)

)
λ(dx)

)

Proof. (i) For a realization of of the cluster process ξc =
∑
k δsk we get a realization ξ =

∑
k ξsk

where each ξsk is chosen according to the law ζ(sk, ·). So conditioning on the sk calculate

E(exp ξ log f | s1, s2, . . .) = E

(
exp

∑
k

ξsk log f

)
=
∏
k

E(ξsk log f) =
∏
k

G[f | sk]

However the right hand side equals exp ξ logG[f |s]. Taking expectations over the realizations
of ξ yields the desired result. Note the conditional independence is the key to the above
argument.

(ii) Use the formula for (i), and the moment expansion of the cluster center p.g.fl. Gc to get

Gξ[f ] = 1 +

∫
S

(G[f | x]− 1)M c(dx) +
1

2

∫
S2

(G[f | x]− 1)(G[f | y]− 1)M c
(2)(dx dy) + . . .

Let f = 1 + g and insert the moment expansion for the cluster member p.g.fl.

G[1 + g | x]− 1 =

∫
S

g(s)Nx(ds) +
1

2

∫
S2

g(s1)g(s2)Nx
(2) + . . .

Combine terms in powers of g and use Fubini’s theorem to switch the order of integration.
Then we can equate terms in the moment expansion for Gξ[1 +g | x] to get the above formulas.

An alternative approach is to note condition on the realization of ξc =
∑
k δsk to find

E(ξ | s1, s2, . . .) = E
∑
k

ηsk =
∑
k

Nxi =

∫
Nxξc(dx)

Taking expecations of both sides yields the desired formula. The second moment measure can
be found similarly, where one term correspond to the case that the two points come from a
single cluster and the other term the case they come from two different clusters.

(iii) This is just case (i) with Gc[f ] = exp(λ(f − 1)).
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(iv) This is just case (iii) where G[f | s] = E(µτsf)κ = g(µτsf) by claim 18 part (iii) and the
definition of the p.g.f. of κ.

Comparing (iii) to equation (∗∗) shows that shot noise process also has a cluster representation,
since its p.g.fl. matches the p.g.fl. of a cluster process. Simplifying this example a little, given
a point process ξ and integrable f , the Cox process with intensity given by

∫
f(t − u)ξ(du) is

equivalent to a cluster process with center ξ and clusters given by a Poisson process with mean
(f(t)). I think this is a little surprising!

5 Branching Processes

20. Claim Let ξ be a general branching process and let G[f | x] represent the p.g.fl. of the
branching kernel.

(i) Let Gn[f | x] p.g.fl. for the point process which represents members of the nth generation of
the branching process starting with a single member at x. Then

Gn+1[f | x] = G[Gn[f | · ] | x]

and hence by induction Gn[f | x] = G(n)[f | x], the nth functional iterate of G[f | x].

(ii) Let ρ(x) represent the probability that a branching process starting at x goes extinct. Then
ρ(x) = limn→∞Gn[0 | x] and its the smallest non-negative solution which satisfies the func-
tional equation ρ(x) = G[ρ | x].

(iii) Let Hn[f | x] represent the p.g.fl. for the point process which contains the points in all the
generations of the branching process up to n starting from a single individual at x. Then

Hn+1[f | x] = f(x)G[Hn[f | · ] | x]

If extinction occurs with probability 1, then limn→∞Hn[f | x] exists and is the p.g.fl. H for
the point process consisting of the points in all the generations. The p.g.fl. H satisfies the
functional equation

H[f | x] = f(x)G[H[f | · ] | x]

(iv) Let the factorial moment measures associated with G[· | x] be given by Nx
(n) and the factorial

moment measures associated with H[· | x] be given by Mx
(n). Then the first two factorial

moments satisfy

Mx(A) = δx(A) +

∫
S

Ms(A)Nx(ds)

Mx
(2)(A×B) = δx(A)

∫
S

Ms(B)Nx(ds) + δx(B)

∫
S

Ms(A)Nx(ds)

+

∫
S

Ms
(2)(A×B)Nx(ds) +

∫
S2

Ms1(A)Ms2(B)Nx
(2)(ds1 ds2)

Proof. (i) This follows from claim 19 part (i) and the recursive definition of a cluster process.

(ii) If f = 0 then
∏
i f(xi) = 1ξ(S)=0. Therefore Gn[0 | x] = P(extinction before nth generation).

Now ρ1(x) = G[0 | x] ≥ 0 and, so because p.g.fl.’s are monotonic, applying Gn[· | x] to both
sides shows ρn+1(s) ≥ ρn(x) for all n. Since ρn ≤ 1 it must have a pointwise limit ρn ↑ ρ. Taking
limits of the equation in (i) the function must satisfy ρ(x) = G[ρ | x]. Why is it the smallest
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solution? Something to do with convexity I think, but I can’t think of the generalization of
Galton–Watson. Maybe there are at most two solutions, like in the multitype Galton–Watson
case.

(iii) The nth generation process consists of a (non-random) point at x, plus n − 1 generation
processes rooted at x1, x2, . . . where the xi are given by the point process associated with G[· |
x]. By independence, conditional on the xi, the p.g.fl.Hn[f | x, x1, x2 . . . ] = f(x)

∏
iHn−1[f | xi]

and therefore, taking expectations, Hn[f | x] = f(x)G[Hn−1[f | · ] | x] as desired. Let ζx,n
represent the nth generation of the point process started at x. Then if extinction happens
almost surely, then almost surely there is an n such that ζx,n = ζx,n+1 = ζx,n+2 = . . . and
limHn[f | x] converges almost surely. Call the limit H[f | x]. Taking limits of the functional
equation for Hn gives the functional equation for H.

(iv) Use the formula in (iii) and the factorial moment expansions as in claim 19 part (ii)

Let ξ be a stationary Poisson branching process whose branching kernel is driven by an
intensity given by η(x,A) = λ(A − x). Assume that m = λ(S) < 1. Then by the Galton–Watson
theory, exinction happens almost surely since the average number of offspring of each individual is
m < 1.

Because the branching kernel is stationary, the factorial moment measures are stationary,
and M(n)(A | x) = M(n)(A − (x, x, . . . , x) | 0). Let M(n) := M(n)(· | 0). Using part (iv) of claim 20
combined and the fact Poisson factorial moments have the form N0

(n) = λn, we get the following
recursive formulas for the moments.

M(A) = δ0(A) +

∫
S

M(A− s)λ(ds)

= δ0(A) + λ(A) + λ ∗ λ(A) + λ ∗ λ ∗ λ(A) + . . .

M(2)(A×B) = M(A)M(B) +

∫
S

M(2)(A− s,B − s)λ(ds)− δ0(A)δ0(B)

The second expression for M(A) comes by interatively substituting M(A) into its recursive formula.
We can further specialize to the branching process in the Hawkes process, where S = R and

λ((∞, 0]) = 0, so there are no offspring before time 0. Let M̃(n)(u) =
∫
Rn+

e−u·xM(n)(dx) be the

Laplace transform of the factorial moment measures Mx
(n). Then the previous formulas imply

M̃(u) =
1

1− λ̃(u)
M̃(2)(u, v) =

M̃(u)M̃(v)− 1

1− λ̃(u+ v)

6 Hawkes calculations

A Hawkes process is a cluster process where the cluster center process is a Poisson process
whose intensity is ν times the Lesbegue measure, and the clusters the translations of a branching
process with Poisson branching kernel. The branching kernel intensity is given by η(x,A) =∫
A
γ(u − x) du where γ : R → R+ satisfies γ(x) = 0 for x ≤ 0 and m =

∫
R
γ(x) dx < 0. Its evident

from the definition that the process is stationary. Here are a calculations related to the Hawkes
process, primarily from [HO74].

First note, that since m < 1, Galton–Watson theory says the clusters are almost surely finite. By
lemma 12 in “zoo” this means the process is locally finite. We can use claim 19 and claim 20 and
18 to write the p.g.fl. in terms of the translation operator τtf(u) = f(u− t)

G[f ] = exp

(∫ ∞
−∞

ν(H[τtf ]]− 1) dt

)

11
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where H is the p.g.fl. of a cluster starting from 0 which satisfies

(1)
Hn+1[f ] = f(0) exp

{∫ ∞
0

Hn[τtf ]γ(t) dt

}
H[f ] = lim

n→∞
Hn[f ]

and also

(2) H[f ] = f(0) exp

{∫ ∞
0

H[τtf ]γ(t) dt

}
The equations are hard to solve, but we can try to tease some information out. When f(x) = s is a
constant, then H becomes the p.g.f. for the total progeny in the Poisson Galton–Watson process. In
theory we can get the interval distributions by solving (2). For example, let π[a,b](z) be the p.g.f.
for the number of points in the interval [a, b]. This corresponds to H[f ] where f = 1 + (z − 1)1[a,b]
and therefore satisfies the equation

(3) π[a,b](z) =


exp

{∫ b
0

(π[a−t,b−t](z)− 1) γ(t) dt
}

a > 0

z exp
{∫ b

0
(π[a−t,b−t](z)− 1) γ(t) dt

}
a ≤ 0 ≤ b

1 b < 0

Specializing (3) to a = 0 we can study the cluster distribution itself. This p.g.f. satisfies

π[0,u](z) = z exp

(∫ b

0

[π[0,u−t](z)− 1] γ(t) dt

)
u ≥ 0

In the limit u→∞ this becomes the p.g.f. for the total cluster size

π(z) = z exp (m(π(z)− 1))

From this it follows that the mean and variance of the cluster size are 1/(1−m) and 1/(1−m)3.
According to [Lew69] theorem of Lewis for Poisson branching processes says that the number of
points suitably scaled has a normal limit. (I think, I can’t access this paper). In the case of the
equilibrium Hawkes process ξ

lim
u→∞

ξ[0, u]− uν/(1−m)√
ν/(1−m)3

∼ Norm(0, 1)

Starting again from (3), the p.g.f. for the equilibrium Hawkes process for the number of events
in [0, l] (or any length l interval since the process is stationary) is given by

Ql(z) = exp

{∫ ∞
−l

[π[t,t+l](z)− 1]ν dt

}
By setting z = 0 we can calculate the survival function for the forward recurrence time of the
Hawkes process.

P(R > l) = P{no events in [0, l]} = Ql(0)

= exp

(
−vl − v

∫ ∞
0

[1− φ(t, l)] dt

)

12
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where φ(y, l) = π[y,y+l](0) so

φ(t, l) =


exp

(∫ y+l
0

[φ(y − t, l)− 1] γ(t)dt
)

y > 0

0 y ≤ 0 ≤ y + l

1 y < −l

Next let f(x) = 1[0,x](u) then H[f ] is the p.g.f. for the total cluster size having length at most x.
In this case (2) becomes

D(x) = P{cluster length ≤ x}

=

{
exp

(
−m+

∫ x
0
D(x− u) γ(u) du

)
x ≥ 0

0 x < 0

As a final calculation we turn to the moment measures. So using claim 19 and the discussion
after 20

M(A) =

∫
S

∫
A

ν(δ0 + γ + γ ∗ γ + . . . )(x+ s) dsdx

=

∫
A

ν(1 +m+m2 + . . . ) dx = |A|ν/(1−m)

So the first moment measure is the Lesbegue measure times ν/(1−m). (The fact the equilibrium
Hawkes process is stationary implies the intensity must be a multiple of the Lesbegue measure).
Its possible to work through an expression for the second moment, but we’ll wait for the next set
of notes on Barlett spectra to do this.
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