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This summarizes some of the basic results of Galton–Watson processe. This basically follows
[Dur07] and [LP16]. These are relavent to Hawkes processes since a Hawkes process can be
described in terms of a branching process.

1. Definition (Galton–Watson process): The Galton–Watson process is a Markov chain branching
process with values Zn ∈ Z+ for n ≥ 0. The quantity Zn represents the size of the nth generation of
a family. Let X be a random variable on Z+ representing the number of offspring of an individual
and let pk = P (X = k). Let Xn,i be i.i.d. copies of X. Starting with Z0 = 1, let

Zn+1 :=

Zn∑
i=1

Xn+1,i

The process Zn is a model for the number of individuals in the nth generation, each of has offspring
independently according to the distribution of X.

When X ∼ Poisson(m) for some m > 0, the process is called a Poisson Galton–Watson process.
As a warm-up let’s calculate the distribution Y for the number of siblings an individual has. Let
m = EX be the mean of the offspring distribution.

P (Y = k) = P{ choose an individual from a family with k+1 children }

=
P ( choose individual |X = k + 1)∑∞
i=0 P (choose individual |X = i+ 1)

=
(k + 1)pk+1∑∞
k=0(k + 1)pk+1

= m−1(k + 1)pk+1

Since the recurrance mpk = (k + 1)pk+1 is satisfied only by the Poisson distribution, X ∼ Y iff
X ∼ Poisson(m).

An event of central importance is E = {Zn = 0 for some n} and let ρ = P (E). It follows by
induction that once Zn = 0 it remains there forever. The event E is called the extinction event and
ρ is called the extinction probability.

2. Claim On the event of non-extinction, Zn →∞ a.s. provided p1 6= 1

Proof. The only non-transient state of the Markov chain Zn is 0. If p0 = 0 then Zn is non-decreasing
and non-constant, so every finite state k ≥ 1 is transient. If p0 > 0 and any finite state k ≥ 1 is
non-transient, then Zn returns to k only if it doesn’t immediately go extinct, which is possible with
positive probability pk0 > 0. Since the probability of returning to k must be less 1 − pk0 < 1, k is
transient.
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This weeks summary

1 Probability Generating Function

A key object for studying the Galton–Watson process is the probability generating function
(p.g.f.)

(1) g(s) = E[sX ] =
∑
k≥0

pks
k

This converges for any s ∈ [0, 1] and uniformly in [0, r] for any r < 1 since the sum is dominated by
the geometric series

∑
k≥0 s

k.

3. Claim The p.g.f. for Zn satisfies

gn(s) = E[sZn ] = g ◦ g ◦ · · · ◦ g(s) = g(n)(s)

Proof. Calculate

E
[
sZn

∣∣ Zn−1] = E
[
s
∑Zn−1

k=1 Xn,i

∣∣∣ Zn−1] =

Zn−1∏
k=1

E
[
sXn,i

]
= g(s)Zn−1

Therefore by the tower law

gn(s) = E
[
E
[
sZn

∣∣ Zn−1]] = E
[
g(s)Zn−1

]
= gn−1(g(s))

Since the base case satisfies g1(s) = EsX1,1 = EsX = g(s), by induction gn(s) = g(n)(s)

4. Corollary (Extinction probability) The extinction probability satisfies ρ = limn→∞ g(n)(0)

Proof. Consider nested events En = {Zn = 0} which satisfy En+1 ⊃ En and E =
⋃
nEn. Since

En = gn(0) it must be that = g(n)(0) ↑ ρ.

5. Corollary (Extinction criterion) Let m = EX and assume that p1 < 1 (that is, X is not trivially
just 1).

(i) ρ = 1 iff m ≤ 1

(ii) The extinction probability is the smallest root ρ = g(ρ) in [0, 1]

Proof. Term-by-term differentiation of the p.g.f. to any order is valid on [0, 1). For example, for r < 1

the term-by-term derivatives of the p.g.f. converge uniformly on [0, r] since the tail is dominated by

Rn =
∑∞
k=n kr

k−1, which is arbitrarily small for large enough n. Similarly the tail of dk

drk
1

1−r bounds

the tail of the termwise kth derivative of the p.g.f. on [0, r]. Furthermore g′(s) = E[XsX−1] ↑ EX
as s ↑ 1 by monotone convergence.

Now g(1) = E1X = 1 so s = 1 is a solution of s = g(s). Furthermore g is non-decreasing
and concave upward since its the convex combination non-decreasing concave upward functions
{1, s, s2, . . . }.

Since by assumption g(s) 6= s for some s ∈ [0, 1] (we exclude this case by the assumption X

is not almost surely equal to 1), the convex upward expression g(s)− s has at most two roots. If
there are two roots, then the slope of g(s)− s given by g′(s)− 1 must be positive at the larger root.
Hence if m ≤ 1 then s = 1 is the smaller of two roots or there is exactly one root.

Without loss of generality, we can assume g(0) ∈ (0, 1) in which case g′(s) > 0 for s ∈ [0, 1). For
if g(0) = 0 then ρ = 0 and g(n)(0) = 0 for all n so g(n)(0) = 0→ 0. In this case each individual has at
least one descendent and some chance of more than one descendent, so its pretty obvious that
exinction never happens. On the other hand if g(0) = 1 then ρ = 1 and gn(0) = 1 for n ≥ 1. In this
case extinction is certain in the first generation.
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Since g is non-decreasing and concave upward U = [0, r) where r is the smallest root of r = g(r).
For any s ∈ U , g(s) > s by definition and g(s) < r since g is strictly increasing. Hence g(U) ⊂ U .
The points g(n)(0) have a limit point in the compact set U . Since g(s) > s for any s < r, the only
possible limit point is r. Hence ρ = limn→∞ g(n)(0) satisfies ρ = g(ρ).

In light of this result, the process is called super-critical, critical or sub-critical according to
whether m > 1, m = 1 or m < 1

2 Martingale Techniques and Super-critical Growth

The preceding analyzed Zn by studying the p.g.f. analytically. Using martingales convergene
we can develop the same results and also study the limiting distributions of Zn.

6. Claim Let m = EX. The process Mn := Zn/m
n is a martingale.

Proof. Note that

E[Zn+1 | Zn] = E

[
Zn∑
k=1

Xn+1,i

∣∣∣∣∣ Zn
]

= ZnE[X] = mZn

Dividing both sides by mn+1 its clear E[Mn+1 |Mn] = Mn. Since Mn ≥ 0, E|Mn| = EMn = M0 =

1 <∞.

This immediately gives a simple formula for the average size of each generation, EZn =

mnEMn = mnM0 = mn.

7. Corollary Assume X is not almost surely 1 (so that p1 < 1). When m ≤ 1 then ρ = 1.

Proof. Note that supE|Mn| = supEMn = 1 < ∞ so limn→∞Mn exists almost surely by the
martingale convergence theorem. Therefore limn Zn/m

n exists almost surely. Say the distribution
of limn Zn/m

n is given by a random variable W .
When m < 1 then Zn decays exponentially in the limit and must tend to 0. In fact the probability

of the event {Zn > 0} decays exponentially. Since Zn ≥ 1 whenever Zn > 0,

P (Zn > 0) ≤ E[Zn | Zn > 0] = EZn = mn → 0

Another way to see the same thing is to consider the total number of descendents Z = Z1 +Z2 + . . . .
This has finite expectation

∑∞
k=0m

k = 1/(1 −m), which again shows Zn = 0 eventually almost
surely.

In critical case m = 1, Zn is a martingale so limn→∞ Zn exists almost surely. But as claim 2
shows, only 0 is non-transient, so the limit must be 0. Interestingly, though ρ = 1, the total number
of offsprong Z = Z0 + Z1 + . . . satisfies EZ = EZ0 + EZ1 + · · · = 1 + 1 + · · · =∞.

Now consider the case m > 1. As before, let W be the limiting distribution of Mn. Its possible
that P (W > 0) > 0, in which case ρ < 0 since Zn = O(mn) → ∞ on this set. That is, Zn grows
exponentially whenever the limiting value of Mn is not 0. So, to understand the growth of the
supercritical case, the key questions are

1. When is W > 0?

2. When W = 0 and the process doesn’t become extinct, what is the growth rate?

A property is inherited if every finite tree has the property, and if whenever a tree has the
property, so do the trees rooted at the children of this tree. Inherited properties have a 0-1 law

8. Claim Every inherited property has conditional probability 0 or 1 given non-extinction

3



This weeks summary

Proof. Let A be the event that a tree has the property. Every finite tree has the property, so
P (A) ≥ ρ. On the other hand, calculate

P (A) = E[P (T ∈ A | Z1)] ≤ E[P (T (1) ∈ A, . . . , T (Z1) ∈ A) | Z1]

Since each of the children are i.i.d., this shows P (A) ≤ E[P (A)Z1 ] = g(P (A)). In the regime that
P (A) ≥ ρ the only way P (A) ≤ g(P (A)) is if P (A) = g(P (A)) and therefore P (A) ∈ {ρ, 1}.

9. Corollary If P (W > 0) > 0 then P (W = 0) = ρ and { W > 0} = {Zn > 0 for all } almost surely.

Proof. The property that {W = 0} is inherited, so its probability equals ρ or 1.

10. Claim If EX2 <∞ then P (W > 0) > 0

Proof. Calculate

E[(Mn −Mn−1)2 |Mn−1] = m−2nE[(Zn −mZn−1)2 | Zn−1]

= m−2nE


Zn−1∑

k=1

(Xn,i −m)

2
∣∣∣∣∣∣∣ Zn−1


= m−2nZn−1σ

2

Where σ2 = varX = E(X −m)2. Therefore the unconditional value ofE(Mn−Mn−1) = m−2nmnσ2 =

σ2/mn Using the usual L2 decompostiion for martingales

EM2
n = EM2

0 +

n∑
k=1

E(Mk −Mk−1)2 = 1 + σ2
n∑
k=1

m−k

Since the sum on the right converges as n→∞ we have supnEM
2
n <∞. Therefore the margingale

Mn converges to W in L2 and hence in L1. Consequently EW = limn→∞EMn = 1, and P (W >

0) > 0.

Its actually sufficient that EX log+X <∞.

11. Theorem (Kesten-Stigum) The following are equivalent when m ∈ (1,∞)

(i) P [W = 0] = ρ

(ii) E[W = 0] = 1

(iii) E[X log+X] <∞

In [AN72] this is proved by analyzing the convergence of a functional equation of the Laplace
transform φn(u) = E[e−uMn ]. In the limit φ(u) = E[e−uW ] satisfies φ(ms) = g(φ(s)). In [LP16] the
theorem is proved via a probabilistic argument involving size-biased Galton–Watson trees. Here is
a less sharp result which shows that growth is almost exponential (even if E[X log+X] =∞).

12. Theorem (Seneta-Heyde) If m ∈ (1,∞) then there exist constants cn such that

(i) limZn/cn exists a.s. in [0,∞)

(ii) P (limZn/cn = 0) = ρ

(iii) cn+1/cn → m
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Proof. For the proof we find another martingale. Starting with any s0 ∈ (ρ, 1) recursively define
sn+1 := g−1(sn) so that sn ↑ 1. The process 〈sZn

n 〉 is a margtingale by our choice of sn. Since its
positive and bounded it convertes a.s. and in L1 to a limit Y with EY = EsZ0

0 = s0.

Rewriting these exponentials cn = −1/ log sn gives sZn
n = e−Zn/cn which shows limZn/cn exists

a.s. in [0,∞]. To get a handle on these constants, by l’Hôpital’s rule

. lim
s↑1

− log g(s)

− log s
= lim

s↑1

g′(s)s

g(s)
= m

This shows (iii) since sn ↑ 1. The property limZn/cn = 0 is inherited so by claim 8 and the
fact E[Y ] < 1, this property must have probability ρ, which shows (ii). Similarly the property
limZn/cn <∞ is inherited and has probability 1 since EY > ρ which shows (i).

What happens when a supercritical process dies out? Essentially it behaves like a subcritical
processs. Geometrically, the conditional p.g.f. is found by “zooming in” on the graph of g on the
square [0, ρ]× [0, ρ].

13. Claim A supercritical branching process conditioned to become extinct is a critical branching
process. If X ∼ Poisson(λ) then the conditional process is Galton–Watson with offspring distribution
X̂ ∼ Poisson(ρλ).

Proof. Let T = inf{n : Zn = 0} and let Zn = (Zn | T <∞). The process Zn is also a Markov chain,
since the probability of eventual exintiction depends only on the current state, rather than the
history. v. More explicitly

P (Zn+1 = zn+1, T <∞ | Z0 = z0, Z1 = z1, . . . , Zn = zn) = P (Zn = n, T <∞ | Zn = zn)

Note that h(k) = P (T <∞ | Zn = k) = ρk since each individual must independently die out. This
function is harmonic in the sense that E[h(Zn+1) | Zn] = h(Zn), which follows directly from the
observation E[h(Zn+1) | Zn] = g(ρ)Zn = ρZn = h(Zn).

If p(x, y) is the one-step transition function for Zn, then Doob’s h-transform gives the transition
functin for Zn

p(x, y) =
h(y)

h(x)
p(x, y) = ρy−xp(x, y)

In particular the offspring distribution for Zn = ρk−1pk and the p.g.f. is given by g(s) =
∑∞
k=0 ρ

k−1pks
k =

g(ρs)/ρ. By composition the n-step p.g.f. satisfies gn(s) = g(n)(s) = gn(ρs)/ρ. So the distribution of
Zn is exactly the distribution described above, of scaling the p.g.f. vertically and horizonally by ρ.

Finally if Zn is a Poisson Galton–Watson process then g(s) = exp(λ(s− 1)) so

g(s) =
g(ρs)

ρ
=

exp(λ(ρs− 1))

exp(λ(ρ− 1))
= exp(λρ(s− 1))

This is the p.g.f. of a Poisson Galton–Watson with parameter λρ

A similar h-transform conditioning on the event that each individual has an infinite line of
descent has the effect of zooming in on the p.g.f in the range [ρ, 1]×[ρ, 1]. In this case the conditional
p.g.f. is given by

g(s) =
g((1− ρ)s+ ρ)− ρ

1− ρ
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3 Limits in the Critical and Sub-Critical Cases

Analogous to the super-critical case, the decay is also exponential in the sub-critical case. This
sharpens the previous result that P (Zn > 0) ≤ mn.

14. Theorem (Heathcote, Seneta and Vere-Jones) For any Galton–Watson process with m ∈ (0,∞)

the sequence 〈P (Z > 0)/mn〉 is decreasng. If m < 1 then the following are equivalent

(i) limn→∞ P (Zn > 0)/mn > 0

(ii) supE[Zn | Zn > 0] <∞
(iii) E[X log+X] <∞

Here’s a “physicist” version with a stronger hypothesis.

15. Claim Suppose σ2 = varX <∞ and m < 1, then limn→∞ P (Zn > 0)/mn > 0

Proof. Using the identity P (Zn > 0) = 1− gn(0), we will study the convergence of 1− gn(0)→ 0

as n→∞. We know g′′(s) ∈ (0,∞) for s ∈ [0, 1) since its concave upward and also g′′(1) <∞. The
quantity g′′(1) = lims↑1 g

′′(s) = EX(X − 1) = varX + m2 −m < ∞. Using the Taylor series with
remainder at s = 1 and bounding g′′(s) by 0 and its maximum C we get a system of inequalities

1−ms ≤ g(1− s) ≤ 1−ms+
1

2
Cs2

Let εn = 1− gn(0). Since εn+1 = 1− g(1− εn) we can

mεn −
C

2
ε2n ≤ εn+1 ≤ mεn

By induction the right hand side implies εn ≤ mn (an inequality we’ve already showed using
martingales). Dividing through by mεn and using this to get a lower bound for the left side results
in

1− C

2
mn ≤ εn+1/m

n+1

εn/mn
≤ 1

So the ratios of the terms εn/mn converge to 1, and the error decays exponentially. Since the
errors sum, the product of these terms converges to a nonzero quantity, and which proves the limit
we are looking for exists

lim
n→∞

εn+1/m
n+1

ε0/m0
= lim
n→∞

P (Zn > 0)

mn
= c > 0

Conditional on non-extinction at time n, there is a limiting distribution of Zn on Z+. Contrast
this with the pathwise martingale convergence to W , and also to the type of conditioning implicit
in the h-transformation when we condition on extinction.

16. Theorem (Yaglom) For each k = 1, 2, . . . , qk = limn→∞ P (Zn = k | Zn > 0) exists and is a
probability distribution. Moreover the p.g.f. of qk given by h(s) =

∑∞
k=1 qks

k satisifes

h(g(s)) = mh(s) + 1−m

Proof. Let hn(s) be the p.g.f. for P (Zn = k | Zn > 0). Then a moment’s consideration shows that

hn(s) =
gn(s)− gn(0)

1− gn(0)
= 1− 1− gn(s)

1− gn(0)
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Because it is more amenable to analysis, let define ĥn := 1 − hn(s) = 1−gn(s)
1−gn(0) . Also, for reasons

evident in the next calculation, define η(s) := 1−g(s)
1−s .

ĥn+1(s)

ĥn(s)
=

1− gn+1(s)

1− gn+1(0)

/
1− gn(s)

1− gn(0)
=

1− g(gn(s))

1− gn(s)

/
1− g(gn(0))

1− gn(0)
=
η(gn(s))

η(gn(0))

Now η(s) is an increasing function of s because g is monotonic and concave upward, and η

represents the slope of the secant line from (s, g(s)) to (1, 1). By induction because g is increasing
and s > 0 we have gn(s) > gn(0), so η(gn(s)) > η(gn(0)). This means that ĥn(s) is increasing in n

and converges pointwise in [0, 1] to some function ĥ(s). Next calculate,

ĥn(g(s)) =
1− gn(g(s))

1− gn(0)
=

1− gn+1(s)

1− gn+1(0)

1− g(gn(0))

1− gn(0)
= ĥn+1(s)η(gn(0))

Now η(s) ↑ m < 1 as s ↑ 1 since it approaches the tangent g′(1), so η(gn(0)) → m as n → ∞. We
deduce the following functional equations

ĥ(g(s)) = mĥ(s) ⇐⇒ h(g(s)) = mh(s) + 1−m

Its immediate that h(1) = h(g(1)) = 1 − m + mh(1), or h(1) = 1 which shows the limits of the
probabilities sum to 1 and therefore h is a probability generating function.

I guess we have neglected to show that the limit of the generating functions is again a generating
function. Its not true in general that the uniform limit of real analytic functions is real analytic. I
think the key is the functional equation, which certainly has a unique (up to multiplicative) solution
as a generating function.

The critical case is arguably the most interesting, but we’ll satisfy ourselves with

17. Theorem (Kesten, Ney and Spitzer) Suppose m = 1 and let σ2 = varX. Then

(i) Kolmogorov’s estimate limn→∞ nP (Zn > 0) = 2/σ2

(ii) Yaglom’s limit law If σ <∞ then the conditional distribution of Zn/n given Zn > 0 converges
as n→∞ to an exponential law with mean σ2/2

Proof. As noted before lims↑1 g
′′(s) = σ2 +m2 −m which in this case is just σ2. So using the Taylor

expansion g(1− ε) = 1− ε+ 1
2σ

2ε2 + o(ε2) we calculate for s = 1− ε

∆1(s) =
1

1− g(s)
− 1

1− s
=

g(s)− s
(1− g(s))(1− s)

≈
1
2σ

2ε2 + o(ε2)

(ε+O(ε2))ε
→ 1

2
σ2 as ε→ 0

Now let

∆n(s) :=
1

1− gn(s)
− 1

1− gn−1(s)
=

1

1− g(g(n−1)(s))
− 1

1− g(n−1)(s)
= ∆1(g(n)(s))

Now since g(n)(s) ↑ 1 as s ↑ 1 clearly lims↑1 ∆n(s) = lims↑1 ∆1(s) = σ2/2. Moreover since g(n)(s) >
g(n−1)(s) > . . . g(s) > s, the convergence is uniform for all n. That is, the error term |∆1(s)− σ2/2|
controls all of the error terms |∆n(s) − σ2/2|. This means given a sequence sn ↑ 1 the following
limit exists

lim
n→∞

1

n(1− gn(sn))
− 1

n(1− sn)
= lim
n→∞

∆n(sn) + · · ·+ ∆1(sn)

n
=
σ2

2
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If we write α := limn(1− sn) (which can take any value in [0,∞]) then we can reformulate this as

(∗) lim
n→∞

n(1− gn(sn)) =
1

σ2/2 + α−1

For part (i) consider

l = lim
n→∞

nP (Zn > 0) = lim
n→∞

n(1− gn(0))

But if we define sn = gn(0), noting 2n→∞ as n→∞ we can rewrite this equation

l = lim
n→∞

2n(1− g(2n)(0)) = lim
n→∞

2n(1− g(n)(g(n)(0))) = 2 lim
n→∞

n(1− gn(sn))

Comparing with (∗) we see the limit satisfies the following equation

l =
2

σ2

2 + l−1
=⇒ l =

2

σ2

For part (ii) consider the conditional Laplace transform of Zn/n given by

Ln(u) = E[e−uZn/n | Zn > 0] =
gn(e−u/n)− gn(0)

1− gn(0)
= 1− n(1− gn(e−u/n))

n(1− gn(0))

By (∗) as n→∞ the numerator tends to 1/(σ2/2 + u−1) and by (i) the denominator tends to 2/σ2.
Hence

lim
n→∞

Ln(u) = 1− σ2/2

σ2/2 + u−1
=

1

uσ2/2 + 1

This is the Laplace transform of a continuous exponential distribution with mean 2/σ2

4 Multi-type Galton–Watson

This section briefly states the analogous results for multi-type Galton–Watson processes. For
proofs see [Har63]. In this process there are k types of individuals, and the one-generation
transition probabilities p(i)(j1, . . . , jk) specify the probability that an individual i has j1 offspring of
type 1, j2 of type 2, etc. For j ∈ Zk+, using the multi-index notation sj = sj11 . . . sjkk and the vector
versions of g(s) = (g(1)(s), . . . , g(k)(s)) and p(j) = (p(1)(j), . . . , p(k)(j)), we can write the multitype
p.g.f. as

g(s) =
∑
j∈Zk

+

p(j)sj

18. Definition (Multi-type Galton–Watson): A k-type Galton–Watson process is a Markov chain
{Zn : n = 0,1, . . . } on Zk+ with transition function

P (i, j) = P (Zn+1 = j |Zn = i) = coefficient of sj in [g(s)]i

To emphasize the dependence on the initial distribution of particles Z0 = i sometimes we write
Z

(i)
n

The generating function satisfies the usual recursion fn+n′(s) = fn(fn′(s)). If f(s) = Ms

where M is a k × k matrix, then the process is said to be singular. Each particle has a single
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offspring, and the process is equivalent to an ordinary finite Markov chain where the particle type
corresponds to the Markov chain state. We’ll assume the process is non-singular.

Let mij = EZ
(i)
1,j be the expected number of type j offspring starting with a single individual of

type i. We assume the mij exist and define the mean matrix M = (mij)i,j=1,...,k. Analogous with
the single-type case, have the following relations

mij =
∂g(i)

∂sj
(1) EZ

(i)
n,j =

∂g
(i)
n

∂sj
(1) E[Zn |Z0] = Z0M

n

If there is an n such that Mn is strictly positive (every entry in the matrix is strictly positive) then
the process Zn is positive regular.

The role of the critical parameter m is now played by the spectral radius (maximum eigenvalue)
λ = ||M ||.
19. Theorem If {Zn} is positive regular and nonsingular then

P (Zn = j infinitely often) = 0

for any j 6= 0

In other words, just as in the single-type case, 0 is the only non-transient state. This means
that the process either tends to an infinite number of indifiduals for some type, or the process
goes extinct. Let ρ(i) be the probability of eventual extinction of the process whose initial state is a
single individual of type i. Then let ρ = (ρ(1), . . . , ρ(k)).

20. Theorem Assume {Zn} is positive regular and non-singular. Let λ = ||M || be the maximum
eigenvalue of M .

(i) If λ ≤ 1 then ρ = 1. If λ > 1 then ρ < 1 (the vectorial inequality holds componentwise)

(ii) limn→∞ fn(s) = ρ

(iii) The only solution of s = f(s) in [0, 1]k is ρ

Thus the process is supercritical, critical or subcritical according to whether λ > 1, λ = 1 or
λ < 1
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