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1 Flight-to-Safety

During periods of high market uncertainty, a common phenomenon is for
investors to investors liquidate positions in more risky assets in favor of po-
sitions in “safe” assets (such as US Treasury bonds). The upshot is that many
asset classes may simultaneously experience price shocks, though their move-
ments may not typically be correlated. The dimensions of risk and safety may
take many forms, and phenomenon sometimes called flight-to-safety or flight-
to-liquidity. For a dynamic equilibrium economic model which gives rise to
flight to safety behavior, see [Vay04]. For an analysis of how flight-to-safety
may be a a transmission mechanism for macroeconomic shocks, see [BGG94].

The time series in figure 1 exhibits two episodes of flight-to-safety dynam-
ics. In late 1998, the market reacted to the sudden insolvency of the Long-term
Capital Management hedge fund. In late 2001, the unwinding of the dot-com
bubble led investors to seek safety. In both episodes US treasury bond cumu-
lative returns sharply spiked, while equity returns sharply declined. Through
each episode, VIX measures of market uncertain rose to atypically high levels.
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2. Factor Models and Gaussian Processes

Figure 1: Episodes of flight-to-safety

Flight-to-safety behavior is distinguished from typical asset price move-
ments by two qualities First, it happens only occasionally and conditionally,
in the face of news or innovations. At these times, market participants to
suddenly reevaluate the risk of their portfolios. Second, flight-to-safety can
simultaneously affect many asset classes, leading to simultaneous declines in
assets which may not usually exhibit much correlation. This makes flight-to-
safety an especially important consideration for risk management, since many
common risk metrics (such as value-at-risk) are based on typical market cor-
relations. Thus, the phenomenon of flight-to-safety may result in unexpected
losses in portfolios which are thought to be well-diversified.

2 Factor Models and Gaussian Processes

A common approach for analyzing returns across a broad portfolio assets is
to attribute those returns to a small number of factors. Let ri be a random
variable representing the asset returns for the ith asset. In their basic form,
a factor model relates the returns ri is related to a vector of factor returns
( f1, f2, . . . , fd) by a linear equation

(1) ri =
d

∑
k=1

βi,j f j + εi or r = B f + ε

where the βi,j are constants. Here the εi is a random variable which represents
the residual returns for the ith asset. The factors may be latent, and deter-
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mined statistically, or they may be separately observable macroeconomic or
fundamental data. By taking many observations of the returns, its possible
to fit the factor loadings βi,j. See [CR82, CK88] for theoretical and empirical
analysis of factor models for US equity returns.

A taxonomy of commonly used types of factors is given in [Con95]. None
of these captures the notion of flight-to-safety very well. For example, statis-
tical or latent factors result in a correlation structure which is independent of
market uncertainty levels. On the other hand macroeconomic factors may not
reflect the nonlinear dependence of flight-to-safety behavior as uncertainty
crosses a threshold. The paper [ACV15] proposes a modification to avoid the
problems of traditional factor models.

(2) ri = αi + βi φ(v) + εi or r = α + β φ(v) + ε

Here v is the VIX, a macroeconomic variable which captures the level of overall
market uncertainty, and φ is an unknown nonlinear function, which is deter-
mined during model calibration. Using a variety of econometric regressions,
[ACV15] show that regressions to a non-linear function φ(v) have a signifi-
cant factor loadings β 6= 0, whereas linear regression against v alone do not.
The function φ has increases for higher levels of v, and the coefficients βi are
negative for risky assets such as equity market returns and positive for safe
assets such as US Treasuries. These qualities suggest that φ(v) is capturing a
flight-to-safety response.

In this paper, we use kernel methods to find the factor loadings α, β and
the functional form of φ. These techniques allow for much greater deal of
flexibility in modeling φ, which is limited to low-degree polynomials and
B-splines in [ACV15]. In contrast, kernel methods allow for non-parametric
modeling of infinite dimensional spaces, and also allow for precise control
of the regularity properties of φ. However, a weakness of the techniques in
this paper is they do not allow for analysis of the significance of the factor
loadings. See the conclusion for further discussion of the tradeoffs.

A Gaussian process (Xt) for t ∈ T for some parameter space T is any process
where, for any n ∈N, t1, t2, . . . , tn ∈ T, the random vector (zt1 , zt2 , . . . , ztn) has
a (multivariate) normal distribution. These distributions are completely char-
acterized by the functions µ(t) = E zt and k(t, s) = Cov(zt, zs). A necessary
and sufficient condition on k is that the matrix given by Ki,j = k(ti, tj) be
positive semidefinite for every {t1, . . . , tn} ⊂ T. See [Kal06, SK07] for more
background.

In the context of machine learning and statistical inference, a Gaussian pro-
cess provides a mechanism for assigning prior probabilities to a class of func-
tions. A wide variety of processes are encompassed by Gaussian processes,
including Brownian motion, Langevin processes, Wiener processes, Kalman
filters, and others. A large survey of kernel functions and the resulting proper-
ties of the function space in terms of symmetry, continuity and differentiability
can be found in [Abr97]. While the function space may be infinite dimension,
model inference remains tractable since we only need consider the finite di-
mensional joint Gaussian distribution of φ(vt) at the observed data points. See
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3. Model Inference

[Mac03, Bis06] for information.
We take the kernel to have the following form, which is a popular choice

for many machine learning applications [Bis06]

(3) k(u, v) = θ0 e−θ1(u−v)2
+ θ2 uv + θ3

In this study, we take the parameters to be θ0 = 1, θ1 = 0.005, θ2 = 0 and θ3 =
20. The Gaussian process exhibits continuity, smoothness, and a reasonable
amount of “stiffness” over the range of values observed for the VIX. See the
conclusions section for more discussion of this kernel function.

3 Model Inference

Let rt,i be the returns of the ith asset at time t. Let zt = φ(vt) to be a random
Gaussian process with µ = 0 and k(u, v) given by (3). Let vt be the macroeco-
nomic variable which captures the market uncertainty level at time t

(4) p(z | v) ∼ N (0, K) where Ki,j = k(vi, vj)

For each t ∈ {1, . . . , T}.

(5) p(rt | zt) ∼ N (α + β zt, Ψ)

where α, β are the factor loadings and Ψ = diag(ψ1, . . . , ψd) is a diagonal ma-
trix representing the volatility of the residuals, and none of these parameters
depend on time t.

We summarize some of the features of the model

1. The dependence across returns comes entirely exposure to the nonlinear
transformation zt = φ(vt).

2. For fixed t, the returns rt,i are conditionally independent across all assets
given zt

3. For fixed i, the residual error values εt,i = rt,i− αi− βi zt are independent
and identically distributed according to N (0, ψi) for some variance ψi

Equations (4) and (5) allow us to find the conditional posterior distribution
for z, which is Gaussian

(6) p(z | r) =
P(r | z)P(z)

P(r)
∼ N (Λγ, Λ)

where

(7)

γt =
d

∑
i=1

βi
ψi

(rt,i − αi)

Λ = K − sK (I + sK)−1 K with s =
d

∑
i=1

β2
i

ψi
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Note that if K is invertible, then the second equation is the same as Λ−1 =
K−1 + sI.

The statistical inference problem is to determine the values of φ, α, β and Ψ

from the observed values vt and rt,i. To find the model parameters, we use the
EM algorithm to iteratively converge to the maximum likelihood parameters.
Given the latent values zt, then the complete log-likelihood is given by

(8) lc(r, z) = −T
2 ∑

i
log|ψi| −

1
2 ∑

t,i

(rt,i − αi − βizt)2

ψi
+ . . .

where the additional terms don’t depend on the model parameters. To per-
form the M-step, take expectations of lc over some probability distribution for
z and maximize 〈lc〉 with respect to αi and βi to get

(9)
(

1 1
T ∑t 〈zt〉

1
T ∑t 〈zt〉 1

T ∑t
〈
z2

t
〉)(αi

βi

)
=

( 1
T ∑t rt,i

1
T ∑t 〈zt〉 rt,i

)
Note that if z is deterministic, these are the normal equations for linear re-
gression. Maximizing 〈lc〉 with respect to ψi gives

(10)
ψi =

〈
1
T ∑

t
(rt,i − αi − βizt)

2

〉

=
1
T ∑

t
(rt,i − αi)

2 − 2βi(rt,i − αi) 〈zt〉+ β2
i

〈
z2

t

〉
Thus, (9) and (10) show that 〈zt〉 and

〈
z2

t
〉

are sufficient statistics.
We can find these from the posterior distribution (7), which gives

(11) 〈zt〉 = E[zt | r]
〈

z2
t

〉
= E[z2

t | r] = Var[zt | r] + E[zt | r]2

These equations comprise the E-step.

4 Methods

As our proxy for market uncertainty, we take the VIX Volatility Index, which
is calculated by the Chicago Board Options Exchange. The index is widely
viewed as a “fear index” which gauges general market uncertainty [Wha00].
This value of this index comes from the price of equity variance swaps on
the S&P 500 index, but it may be considered an average of the option implied
volatility. See figure 2 for a plot of the VIX levels over the analysis period.
Note that the history is punctuated by several episodes where VIX sharply
spikes upward for a short period.

We collected returns data from a large number of asset classes. Our pri-
mary data sets comes from the Center for the Research in to Securities Prices
(CSSP). First, we incorporated their value-weighted equity market total return
series as a measure for stock market returns. This series, which is similar to the
S&P 500 or the Wilshire 5000, and includes a wide variety of US equity shares
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4. Methods

Figure 2: VIX time series

from the NYSE, Nasdaq and other markets. Its construction incorporates total
distributions, such as dividends, and accounts for new issues and delistings.
For US Treasury bond returns, we take the CSRP constant-maturity total re-
turns series. These are constructed by fitting a yield curve to all outstanding
Treasury bond prices, and interpolating to a constant-offset date.

For corporate bond returns, we use the Bank of America Merill Lynch cor-
porate bond total return indexes. For low quality bonds we take the US High
Yield Master II index and for investment grade bonds we take the US Cor-
porate Master index. For precious metals, we use the Goldman Sachs Com-
modities Index (GSCI) precious metals total returns index. Finally, to get more
granularity on equity market returns, we take the price indexes for ten S&P
500 industry sector portfolios. The companies are sorted into portfolios based
on their Global Industry Classification Standard (GICS) code. While these are
prices, not total returns, the returns from these prices should nevertheless give
an approximate indication of the flight-to-safety behavior.

We restrict the data sets to the dates between January 1, 1990 and Decem-
ber 31, 2015. This start date coincides with the inception of the current version
of the VIX index. In order to avoid problems related to missing or non-aligned
data, we calculate cumulative weekly returns for each series, assigning zero
returns to days with missing data. This should also avoid problems stemming
from different times series being calculated at different times during the day.
The VIX on a particular date is regressed against the returns for the subse-
quent week, starting on that day, and ending on the date the next VIX level is
observed. In all, our model is calibrated using 1356 observation dates over 22

asset return categories.
Model calibration was performed on a MacBook Air personal computer

with a 2.2 GHz Intel Core i7 processor. The model calibration software was
scripted using the R programming language. The underlying BLAS linear al-
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gebra routines incorporated the vecLib library, which is a part of Apple’s
Accelerate framework. Model calibration typically took less than 30 seconds.

5 Results

The primary results of the kernel regression are presented in table 1. Note the
signs of the regression coeffients β broadly correspond to notions of which
assets are considered safe and risky. Thus, equity indices and high yield cor-
porate bond show a negative loading to the flight-to-safety factor, whereas US
Treasuries and investment grade bonds show a positive loading. One excep-
tion are stock prices in the energy sector show a positive loading, albeit with
low r2. Also, precious metals, which are often thought of as a safe storehouse,
have a negative loading, with small r2.

Table 1: Factor model parameters
Asset class β α r2 (%)
Equity-ValueWeight -0.777 0.003 0.16

SP-Energy 0.584 0.001 0.10

SP-Materials -0.892 0.002 0.15

SP-Industrials -1.022 0.002 0.10

SP-ConsumerDisc -0.221 0.002 0.08

SP-ConsumerStap -0.424 0.002 0.11

SP-Healthcare -0.793 0.002 0.17

SP-Financials -2.348 0.003 0.43

SP-Technology -1.442 0.003 0.20

SP-Telecoms -0.351 0.001 0.09

SP-Utilities -0.135 0.001 0.08

Corp-HighYield -1.577 0.003 2.64

UST-1y 0.086 0.001 5.59

UST-2y 0.233 0.001 9.32

UST-5y 1.048 0.000 2.65

UST-7y 1.792 0.000 4.14

UST-10y 1.943 0.000 3.40

UST-20y 3.033 -0.001 3.88

UST-30Y 3.982 -0.002 4.38

Corp-InvGrade 0.758 0.001 1.07

GSCI-Metals -0.297 0.000 0.08

In general, the r2 of the regression is fairly low, less than 2%. This may
reflect the fact that flight-to-safety episodes are somewhat uncommon. Over-
all, the model provides the most explanatory power for treasury bonds. The
regression coefficients α are fairly close to 0, reflecting the the fact that asset
returns themselves tend to have mean close to 0.

The non-linear response function φ for the flight-to-safety factor is shown
in figure 3. This plot gives the 95th percentile range for zt = φ(vt) at each ob-
served value vt for the VIX. While the right portion of the graph exhibits more
wild oscillations, the bulk of the observations are for smaller values of the VIX,
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5. Results

Figure 3: The response function φ vs VIX

near the left axis. Note that according to table 2, 90% of the observations of
the VIX are less than 29. This corresponds to the portion where the loading is
essentially flat and near zero. Thus, in normal times, the flight-to-safety factor
has almost no influence on asset returns. Another 7% of observations corre-
spond to the hump between 30 and 40, and in this range the main effects of
the flight-to-safety factor occur. Judging by the spikes in figure 2, these peri-
ods correspond to periods of greater uncertainty. Only a small fraction of data
corresponds to high levels of the VIX. However, in these regions the factor is
generally positive, especially for levels around 60, which were only observed
during the 2008 financial crisis.

Table 2: VIX quantiles
Quantile 50% 90% 97% 99% 99.5%
VIX level 18.12 29.12 37.68 47.15 55.47

Turning again to the β values, its worthwhile to compare the non-linear
factor loadings to more traditional linear factors. In table 3 we compare the
CAPM market factor loading to the flight-to-safety hedge ratio. Since the
CAPM loading corresponds to a factor model where the single factor is the
value weighted equity market index return, and coefficient is also commonly
called beta, but it shouldn’t be confused with our model β’s. The flight-to-
safety hedge ratio is simply the ratio of model β’s to the flight-to-safety factor,
and represents the number of units of the market portfolio required to offset
the exposure to the flight-to-safety factor.

In general, the CAPM beta’s track the flight-to-safety hedge ratios, so a
market neutral portfolio roughly corresponds to a portfolio which would be
hedged against flight-to-safety shocks. However, there are some notable ex-

8



Table 3: Market beta vs. flight-to-safety beta
Sector CAPM beta FTS hedge ratio
Energy 0.812 -0.752

Materials 1.020 1.148

Industrials 1.040 1.315

ConsumerDisc 1.065 0.284

ConsumerStap 0.520 0.546

Healthcare 0.728 1.021

Financials 1.276 3.022

Technology 1.299 1.856

Telecoms 0.792 0.452

Utilities 0.567 2.020

ceptions. Financial stocks seem to have significantly more sensitivity to flight-
to-safety shocks vs. normal market movements, where consumer discretionary
stocks have significant lower sensitivity. Perhaps this is because flight-to-safety
episodes are primarily related to financial market uncertainty, and are some-
what disconnected from the real economy.

6 Analysis and Conclusions

The results of this study confirm and support the results of [ACV15]. Though
the present study uses different methods, asset classes, and returns periods,
we find a broadly similar nonlinear function φ(vt) and broadly similar factor
loadings for the model (2). The current approach does not give p-values to
measure the significance, so its difficult to compare the approaches on purely
statistical grounds. This is a direction for future study.

One important open question is how to best chose the kernel function (3).
The author experimented with several variations before settling on this par-
ticular form. This selection resulted in a continuous, smooth, and relatively
stiff response function φ, which still retained flexibility in its overall shape.
Choosing a more flexible class of functions allows for higher likelihood, but it
reduces the ability to interpret the loadings, and may be susceptible to overfit-
ting. Overall, there is a bias/variance trade off in selecting the class of Gaus-
sian processes. A direction for future research is to select the kernel and its
hyperparameters using more statistical approaches.

A major potential application for the flight-to-safety factor is to improve
risk management of asset portfolios. Knowing potential exposures during
flight-to-safety situations allows is valuable for risk managers. Thus by man-
aging total flight-to-safety exposure can complement traditional approaches
using linear correlations, such as value-at-risk and factor models. The flight-
to-safety factor can also provide a statistical basis for the construction of stress-
test scenarios. Finally the methods of the current study can be extended to find
nonlinear dependence on other variables. A nonlinear regression on Carhart’s
4 factors may lead to better forecasting of asset returns [Car97].

The present study finds evidence that there is a relationship between asset
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returns during periods of unusual market uncertainty, which is different from
the linear correlation observed normally. Thus, the present study provides a
quantitative framework for analyzing flight-to-safety behavior, using kernel
regression methods.
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