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1 Overview

The solutions to a number of partial differential equations (PDEs) have a rep-
resentation in terms of expectations of a related stochastic process, a Brownian
motion or other diffusion. The basic tool which connects PDE’s and diffusions
is Itô’s formula which we state here.

*mccorvie@berkeley.edu
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1. Overview

1 theorem (Itô’s Formula). Let (X1, . . . , Xn) be an n-dimensional continuous
(Ft) semimartingale. Then, for every f ∈ C2(Rn) we have :

f (Xt) = f (X0) +

t∫
0

∇ f (Xs) dXs +
1
2

t∫
0

n

∑
i,j=1

∂ij f (Xs) d〈Xi, X j〉 (1)

In what follows, we show that clever choices of f and the diffusions Xt
allow us to construct local martingales. By using the optional stopping theo-
rem, we can find representations for solutions to the PDE’s subject to various
boundary conditions. The representations prove that solutions are unique: any
two solutions must have the same representation. The representation is found
by assuming a solution exists. We would like to turn around and show that a
function defined by the representation actually is a solution, but this is more
difficult. In what follows, we will focus mainly more on the representations
themselves, rather than when the representations show existence. The exposi-
tion below essentially follows the approach of [Dur84] and [Bas98].

1.1 Preliminary Concepts

A filtration is an increasing collection of σ-fields Ft, 0 ≤ t ≤ ∞, that are right
continuous and complete: ∪ε>0Ft+ε = Ft for all t and N ∈ Ft for all t when-
ever P(N) = 0. A process Xt is a martingale if for each t and s < t the random
variable Xt is integrable and adapted to Ft and E[Xt | Fs] = Xs a.s. The process
Xt is a local martingale if there exist stopping times Tn ↑ ∞ such that XTn ∧ t is
a martingale for each n. A process is a semi-martingale if it is the sum of a local
martingale and a process that is locally of finite bounded variation (i.e., finite
bounded variation on every interval [0, t]).

If Xt is a local martingale, the quadratic variation of X is the unique in-
creasing continuous process 〈X〉t such that X2

t − 〈X〉t is a local martingale. If
the semi-martingale Xt = Mt + At, where Mt is a local martingale and At has
paths of locally finite bounded variation, then 〈X〉t is defined to be 〈M〉t. If X
and Y are two semi-martingales, we define

〈X, Y〉t =
1
2
(〈X + Y〉t − 〈X〉t − 〈Y〉t) (2)

An important identity is the covariance formula (see [Dur84] 2.5). If A ·
X =

∫ t
0 A dXs and B · X =

∫ t
0 B dXs, then

〈A · X, B ·Y〉t =
t∫

0

AB d〈X, Y〉t (3)
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1.2. The Elliptic Operator and Associated Diffusion

1.2 The Elliptic Operator and Associated Diffusion

Consider the differential operator

L f (x) =
1
2

d

∑
i,j=1

aij(x)∂ij f (x) +
d

∑
i=1

bi(x)∂i f (x) (4)

Assume the aij and bi are bounded and C1. We assume the operator L is
uniformly strictly elliptic, which means that for some Λ > 0 independent of x

Λ
d

∑
i=1

y2
i ≤

d

∑
i,j=1

aij(x)yiyj ≤ Λ−1
d

∑
i=1

y2
i (5)

Geometrically, the quadratic form defined by the matrix (aij) is elliptical (pos-
itive definite) and the semi-minor axes are bounded above and below uni-
formly at all x.

Consider now the stochastic differential equation (SDE) for a diffusion
with drift coefficients β and diffusion coefficients σ

Xt = x +

t∫
0

β(Xs) ds +
t∫

0

σ(Xs) dWs (6)

Note that β and σ only depend on the current value of Xt, so that the resulting
process is a Markov process. In the generic case, we could imagine these to
be arbitrary measurable functions in the filtration. The covariance formula (3)
gives 〈Xi, X j〉t = ∑k

∫ t
0 σik(Xs)σkj(Xs) ds. Thus, for any f ∈ C2 Itô’s formula

(1) gives

f (Xt)− f (X0) =

t∫
0

∇ f · σ dWs +

t∫
0

∇ f · β ds +
1
2 ∑

ij

t∫
0

∂ij f (Xs)(σσᵀ)ij(Xs) ds (7)

The first term Mt =
∫ t

0 ∇ f · σ dWs is a local martingale. The other terms equal∫ t
0 L
′ f (Xs) ds where L′ = ∑i βi∂i +

1
2 ∑ij(σσᵀ)ij∂ij is an elliptic operator. The

fact L′ is elliptic follows from the observation yᵀσσᵀy = ||σᵀy||2 ≥ 0.
In order for L′ = L, then the diffusion coefficients must satisfy (aij) = σσᵀ

and b = β. Given an arbitrary L which satisfies our assumptions, we can find
a continuous and bounded σ which satisfies this equation. For example, take
the pointwise Cholesky decomposition of the matrix (aij). In the case b = 0
and aij = δij then L = 1

2 ∆ = 1
2 ∑d

i=1 ∂ii is called the Laplacian. In this case, the
associated diffusion is just d-dimension Brownian motion with σ = I.
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2. Parabolic Equations

Its useful to know when the diffusion associated with an elliptic operator
L must actually exists, so that our approach may work.

2 theorem. Suppose σ and β are Lipschitz and bounded. Then (6) has a solution
which is unique

Proof. (Sketch) For existence use Picard iteration

Xn+1 = x +

t∫
0

σ(Xn(s)) dWs +

t∫
0

b(Xn(s)) ds (8)

For uniqueness use Gronwall’s lemma to show E sups≤t |Xs −Xt|2 is 0 for any
two solutions X and X′. See [Bas98] section I.3 for details.

We turn now to some examples of how to exploit the relationship of Xt
and L.

2 Parabolic Equations

Given a diffusion X associated to the elliptic operator L, we may add a com-
ponent X0

t = t. More formally, if X satisfies (6), then the extended diffusion
X is the solution to an SDE where β0 = 1 and the rest of the βi = βi the drift
coefficients for Xt, and where σ0,j = 0 and all other σij = σij are the same as

for Xt. The solution satisfies Xi
= Xi for i = 1, . . . , d and X0

= t. Further-
more, the diffusion associated with X is given by L = ∂t + L. Thus, we can
analyze functions of Xt which have an explicit time dependence by analyzing
the parabolic operator.

2.1 Cauchy Conditions

What follows is the prototype of the kind of result which is the thrust of this
paper. The form of the argument in the proof is something we will use over
and over, for different types of equations. The representations we find for the
solutions to PDE’s will be variations on this theme.

3 proposition. Suppose f is bounded continuous function and suppose u is a con-
tinuous bounded solution to the (backward) parabolic equation with Cauchy condi-
tions {

∂tu + Lu = 0 on (0, T)×R

u(T, x) = f (x) on {T} ×R
(9)
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2.2. Existence of Solutions

Then u satisfies

u(t, x) = EXt=x[ f (XT)] (10)

where Xt is a diffusion associated with L.

Proof. Let Mt = u(t, Xt) where Xt is the diffusion associated with the elliptic
operator L. Then by Itô’s formula applied to the diffusion X = (t, X)

Mt −M0 = local martingale +

t∫
0

(∂t + L)u ds (11)

However, the second term on the right is 0 because u satisfies (9). Hence
Mt = u(t, Xt) is a local martingale. By the martingale convergence theo-
rem Mt converges as t ↑ T. By continuity and boundary condition in (9),
Mt = u(t, Xt) → u(T, XT) = f (XT) as t ↑ T. Since u is bounded, Mt is UI so
we have Mt = E[MT | Ft] = E[ f (XT) | Ft]. Taking t = 0 gives the representa-
tion u(0, x) = Ex[ f (XT)]. For other t, since Xt is as Markov process, the same
argument applies conditional on Xt = x.

The diffusion Xt associated with an elliptic operator L need not be unique,
since σσᵀ = (aij) does not uniquely specify σ. However, proposition 7 shows
expectations are unique, and E[ f (XT)] = E[ f (X′T)] for diffusions Xt and X′t as-
sociated with L. As a simple example, for L = 1

2 ∆, σ could be any orthogonal
matrix, reflecting the rotational symmetry of Brownian motion.

Note that this representation implies that solutions to (9) are unique, since
any two solutions have the same representation.

2.2 Existence of Solutions

We’ll turn briefly to questions of existence for the Cauchy problem (9) of the
last section. Since we know that any solution has representation (10), start by
defining

v(x, t) = EXt=x[ f (XT)] (12)

Does this expression always provide a solution? This answer has three parts.
First, is v defined by (12) smooth, or at least smooth enough that Lv is

defined? By analytic means (such as the parametrix method) its possible to
show that, under certain conditions, there is a fundamental solution p(t, x, y)
such that any solution satisfies, for bounded continuous f

u(t, x) =
∫

p(t, x, y) f (y) dy (13)

5



2. Parabolic Equations

We also know from (22) that∫
p(t, x, y) f (y) dy = Ex[ f (Xt)] =

∫
f (y)Px(Xt ∈ dy) (14)

Since this holds for all bounded continuous f , the fundamental solution must
be the same as the transition kernel density for Xt. For example, for L = 1

2∇2,
then the pt(x, y) = 1√

2πt
e−|x−y|/2t is the C∞ Gaussian kernel. In any case,

if we can construct a fundamental solution with sufficient regularity, then
the regularity of v follows by differentiating under the integral sign. These
techniques allow for the weakest assumptions on a, b and f .

Another more probabilistic approach is to show there are a collection of
stochastic processes which correspond to the x-derivatives of Xt. Formally
differentiating, we can define a process ∂iXt by the SDEs

d∂iX
j
t = ∑

k
Dkbj(Xx

t )∂iXk
t dt + ∑

j
Djσ(Xt)∂iX

j
t dBt (15)

The solutions of SDE’s depend continuously on the parameters defining them,
so its possible to show that the finite differences h−1(Xx+hei

t − Xx
t ) converge

to ∂iXt in the L2 sense. Furthermore, by linearity of expectations its possible
to show

∂iv(x, t) = ∂iE f (XT) = ∑
j

EDj f (XT)∂iX
j
T (16)

This formula directly exhibits the regularity of v. Note this approach requires
the stronger assumption that σ, b and f are smooth.

Next, we must check, does v defined by (12) actually satisfy the PDE? This
is answered by a neat martingale argument, which works, with appropriate
modifications, for all the PDE’s considered in this paper.

4 proposition. Suppose f is bounded and that v defined by (12) has continuous
second derivatives. Then v satisfies the equation ∂tv + Lv = 0 on (0, T)×Rd

Proof. By the Markov property of Xt, the distribution of XT conditional on Ft
is the same as the distribution of XT given Xt. Therefore, v satisfies

v(t, Xt) = E[ f (XT)|Ft] (17)

This implies that v(t, Xt)− v(t, x) is a martingale. Applying Itô’s formula to
this expression we find

v(t, Xt)− v(0, x) = local martingale +

t∫
0

(∂tv + Lv)(s, Xs) ds (18)
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2.3. Time Reversal

The integral on the right hand side represents a stochastic process which, by
the above equation, is evidently a local martingale. Furthermore the integral
is continuous and locally of bounded variation. Therefore the integral is iden-
tically 0 for all t ∈ (0, T). This implies ∂tv + Lv is 0 for t ∈ (0, T), since the
integrand is continuous.

Finally does v satisfies the boundary condition? Fundamentally this is a
question of the continuity of the expectation, which turns on the distribution
of Xt for t ∈ (T − ε, T) for small ε.

5 lemma. Xt → X0 in probability as t→ 0. More specifically we have a bound

P(sup
s≤t
|Xs − x| > ε) ≤ ct (19)

for some constant c which depends on X and ε.

Proof. Construct nonnegative f (x) ∈ C∞ such that f (x) = 0 and f (y) = 1 for
|y − x| ≥ ε and the ∂ij f are bounded. Let τ = inf{t : |Bt − x| > ε}. Since
f (x) ≥ 1B(x,ε), and by Itô’s formula

P(sup
s≤t
|Xs − x| > ε) = E1B(x,ε)(Xt∧τ)

≤ E f (Xt∧τ) =

t∧τ∫
0

L f (Xs) ds ≤ ct
(20)

for some constant c. The last inequality holds since each term in L f (x) is
uniformly bounded.

6 corollary. For f bounded and continuous, v(x, t)→ f (x) as t→ T

Proof. For t close to T, by the lemma and continuity of f , with high probability
f (Xt) is close to f (XT). The contribution to the expectation from when Xt is
far from XT is small, since f is bounded.

2.3 Time Reversal

From the diffusion perspective, its natural to consider expectations from some
time in the future, giving solutions for times before the boundary condition.
However, the PDE is usually written to analyze the evolution of solutions for
times after the boundary which, in the case of the heat equation, describe an
initial configuration. This is easily accomplished by the substitution t→ T− t.

7 proposition. Suppose f is bounded and suppose u is a continuous bounded solu-
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2. Parabolic Equations

tion to the parabolic equation with Cauchy conditions{
∂tu = Lu on (0, ∞)×Rd

u(0, x) = f (x) on {0} ×Rd (21)

Then u satisfies

u(t, x) = Ex[ f (Xt)] (22)

where Xt is a diffusion associated with L.

Proof. First, note that by time-translation symmetry, there is no problem ex-
tending the solution in proposition 7 to all times t < 0. For suppose t ∈ (t0, T)
for some t0 < 0. We can solve the Cauchy equation with the same boundary
condition at T − t0 instead of at T, and this solution is defined back to time
0. Performing a time-translation t → t + t0 leaves the operator L unaffected,
while extending the solution back to t0.

Suppose u satisfies (21). Then v(t, x) = u(T − t, x) satisfies (9). Thus from
proposition 3 we have a representation

u(t, x) = EXT−t=x[ f (XT)] (23)

By the Markov property, XT conditional on XT−t = x has the same law as Xt
conditional on X0 = x, which gives (22)

Note that for this solution u, we run time “forward” on the diffusion, but
the explicit time dependence of the function runs “backward”. Its interesting
to ask, what diffusion is given by Xt = XT−t? Roughly speaking the answer
is the diffusion associated with the adjoint L∗

L∗ f (x) =
d

∑
i,j=1

∂ij(aij(x) f (x))−
d

∑
i=1

∂i(bi(x) f (x)) (24)

which satisfies the equation (as can be verified via integration by parts).∫
L f (x) g(x) dx =

∫
f (x)L∗g(x) dx (25)

Heuristically, the fundamental solution for the reversed diffusion transposes
the starting and ending points, so p(t, x, y) = p(t, y, x). Now a fundamental
solution satisfies (in the distributional sense){

∂t p(t, x, y) = Lx p(t, x, y)
p(0, x, y) = δx−y

(26)

8



2.4. Inhomogeneous Parabolic Equation

(In the above we write Lx to emphasize the derivatives are taken with respect
to x variables). Basically, we must verify p satisfies

∂t p(t, x, y) = L∗x p(t, x, y) (27)

which is the same as showing

∂t p(t, x, y) = L∗y p(t, x, y) (28)

This follows from the fact the diffusion is a Markov process, and hence the
fundamental solution satisfies the Chapman-Kolmogorov equation. For the
complete answer, which is not as simple as this sketch, see [HP86].

2.4 Inhomogeneous Parabolic Equation

Next we add an inhomogeneous term g. The solution is the same with the
addition of an integral of the particle along the path

∫ t
0 g(Xs) ds

8 proposition. Suppose f and g are bounded and suppose u is a continuous bounded
solution to the parabolic equation with Cauchy conditions{

∂tu + Lu + g = 0 on (0, T)×R

u(T, x) = f (x) on {T} ×R
(29)

Then u satisfies

u(t, x) = EXt=x

 f (XT) +

T∫
t

g(Xs) ds

 (30)

where Xt is a diffusion associated with L.

Proof. Let Mt = u(t, Xt) +
∫ t

0 g(Xs) ds. Using Itô’s formula for u(t, Xt) we get

Mt −M0 = local martingale +
t∫

0

(∂t + L)u(s, Xs) ds +
t∫

0

g(Xs) ds (31)

Since u satisfies (29), the second and third term together equal 0, and Mt is
a local martingale. By the same argument as proposition 3, Mt = E[MT |
Ft]. Since u satisfies (29), MT = f (XT) +

∫ T
0 g(Xs) ds, and we get the desired

representation (30) for t = 0. The representation (30) holds for other t by the
Markov property for Xt.

9



2. Parabolic Equations

2.5 Feynman-Kac Formula

Next we add a term q(x)u(t, x) which is proportional to u. The effect of this
can be visualized as incorporating a random mass for each particle. The
solution is then the expectation at the random final location of the parti-
cle times the mass. The mass starts at 1 at time 0, and grows according to
m′ = −q(Xt)m.

9 proposition. Suppose f and q are bounded and suppose u is a continuous bounded
solution to the parabolic equation with Cauchy conditions{

∂tu + Lu− qu = 0 on (0, T)×R

u(T, x) = f (x) on {T} ×R
(32)

Then u satisfies

u(t, x) = EXt=x

[
f (XT)e−

∫ T
t q(Xs) ds

]
(33)

where Xt is a diffusion associated with L.

Proof. Let Mt = u(t, Xt)e−
∫ t

0 q(Xs) ds. Let’s abbreviate Zt = e−
∫ t

0 q(Xs) ds, and
note that ∂ijZt = ∂iZt = 0 and ∂tZt = −q(Xt)Zt. Using the product rule and
Itô’s lemma we find

Mt −M0 = local martingale+
t∫

0

Zs∂tu(s, Xs) + u(s, Xs)∂tZs + ZsLu ds

= local martingale +

t∫
0

(∂tu− qu + Lu)Zs ds

(34)

Since u satisfies (32), the second term is 0 and Mt is a local martingale. By the
argument in proposition 3, Mt = E[MT | Ft]. Let t = 0, to get the representa-
tion (33) at time 0. The representation (33) holds at other times by the Markov
property of Xt.

There is also a probabilistic interpretation of this solution when q < 0.
Suppose we extend the state space of the Markov process Xt to include a
“cemetery state” ∂. We define a killed process X̃t which randomly jumps to
state ∂, and upon entering the cemetery remains there.

We assume the jump to ∂ occurs with hazard rate q(Xt). We track whether
the jump has occurred with the random variable Nt = 1X̃t 6=∂. Thus Nt is a

Markov process with conditional infinitesimal generator d
dt ENt=0[Nt | Xt] =

10



2.6. Cameron-Martin-Girsinov

q(Xt) since, heuristically, Nt+dt 6= Nt only in the states of the world when
X̃t+dt = δ and X̃t 6= δ. In this case Nt+dt − Nt = −1, so the difference in
expectations is

E[Nt+dt | Xt]− E[Nt | Xt] = −1 · P(X̃t+dt = δ, X̃t 6= δ)

= −1 · P(X̃t+dt = δ | X̃t+dt 6= δ) P(X̃t+dt 6= δ)

= −1 · q(Xt) E[Nt | Xt]dt

(35)

From this equation it follows that E[Nt] = E[e−
∫ t

0 q(Xt) dt]. If we extend u so
that u(t, ∂) = 0 for all t, we can write

du(t, X̃t) =

{
0 if X̃t = ∂

du(t, Xt) + u(t, Xt)dNt if X̃t 6= ∂
(36)

This means that

u(t, X̃t)− u(0, x) =
t∫

0

∇u · β dWs +

t∫
0

u(s, Xs)(dNs + q(Xs)ds)

+

t∫
0

(∂t + L− q)u(s, Xs) ds

(37)

The first two terms on the right hand side are local martingales and the last
one is 0 if u satisfies (32), so Mt = u(t, X̃t) is a local martingale. By the usual
argument we get a representation

u(t, x) = EX̃t=x[u(T, X̃T)]

= EXt=x[ f (XT)NT ]

= EXt=x[ f (XT)e
∫ t

0 q(Xs) ds]

(38)

Lots more rigor can be found in [RW94] chapter III.18.

2.6 Cameron-Martin-Girsinov

Next we consider what happens when we change the drift terms. Suppose

L0 f (x) = L f −
d

∑
i=1

bi∂i f =
1
2

d

∑
i,j=1

aij∂ij f (x) (39)

Physically, the terms bi in L correspond to a force field, and the effect on the
associated diffusion Xt is to introduce a drift on the trajectory. What we show
now is that the solution of L has a representation in terms of the driftless

11



2. Parabolic Equations

stochastic process associated with L′. This representation incorporates a mul-
tiplicative factor, similar to the Feynman-Kac formula, though the factor is a
bit more complicated.

First lets explore the properties of the exponential martingale

10 lemma. If Yt is a continuous local martingale then Zt = exp(Yt − 1
2 〈Yt〉) is a

non-negative local martingale which satisfies dZt = Zt dYt

Proof. Apply Itô’s formula (1) to f (Yt, 〈Yt〉) to get

f (Yt, 〈Yt〉)− f (Y0, 0) =
t∫

0

∂1 f (Ys, 〈Ys〉) dYs +

t∫
0

∂2 f (Ys, 〈Ys〉) d〈Ys〉

+

t∫
0

1
2

∂11 f (Ys, 〈Ys〉) d〈Ys〉

(40)

When f (u, v) = exp(u − 1
2 v) then clearly 1

2 (∂11 + ∂2) f = 0. Hence Zt =
f (Yt, 〈Yt〉) its a local martingale with the stated properties.

If Y0 = 0 then E[Zt] = Z0 = 1, so we can use it to define a probability
measure on F . For any Ft-measurable random variable A let EQ[A | Ft] =
E[AZt | Ft], so that the restriction of the Radon-Nikodym derivative dQ/dP

to Ft is given by Zt.

11 theorem (Girsanov). If Xt and Yt are continuous martingales under P with
Y0 = 0 P-almost surely. The semi-martingale X′t = Xt − 〈X, Y〉t is a martingale
under Q, and the quadratic variation of Xt is the same under P and Q.

Proof. The essence of the proof is to show is that ZtX′t is a P-martingale, which
is just an application of Itô’s formula (1).

Zt(Xt − 〈X, Y〉t)− X0 =

t∫
0

(Xs − 〈X, Y〉s) dZs +

t∫
0

Zs dXs −
t∫

0

Zs d〈X, Y〉s + 〈X, Z〉t (41)

The first two terms are local martingales, so we need to show the last two
terms cancel. But this follows from the fact dZt = Zt dYt and the covariance
formula (3). We prove that 〈X〉t is the same in Q by a similar calculation,
checking that Zt(X2

t − 〈X〉t) is a P-martingale.

Girsanov’s theorem is a generalization of the earlier Cameron-Martin the-
orem, which is specialized to diffusions. We’re now in a position to state the
main result of this section.
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2.6. Cameron-Martin-Girsinov

12 proposition. Suppose f is bounded, suppose each component of σ is bounded and
C2, that σ−1 is bounded and that a = σσᵀ. Let suppose u is a continuous bounded
solution to the parabolic equation with Cauchy conditions (9). Let Xt be the local
martingale

dXt = σ(Xt) dWt (42)

and for ρ = b(σᵀ)−1 define

Zt = exp

 t∫
0

ρ(Xs) dWs −
1
2

t∫
0

|ρ(Xs)|2 ds

 (43)

Then u has a representation

u(t, x) = EXt=x [ f (XT)ZT ] (44)

Proof. Let Yt =
∫ t

0 ρ(Xs) dWs and recognize the expression (43) in the state-
ment theorem is just Zt = exp(Yt − 1

2 〈Yt〉t). By proposition 10 and the dis-
cussion which follows, Zt is the Radon-Nikodym derivative to an equivalent
measure Q on the filtration F . By Girsanov’s theorem 11, Xt − 〈Xt, Zt〉 is a
martingale under Q and 〈X〉t is the same under both measures.

We calculate

d〈Z, Xi〉t =
d

∑
j=1

ρj(Xs) d〈W j, Xi〉t =
d

∑
j=1

ρj(Xs)σij(Xs) ds = bi(Xs) ds (45)

Therefore if we define

dŴt = σ−1(dXt − b(Xt) ds) (46)

then Ŵt is a continuous martingale under Q. Since 〈Xi, X j〉 is the same under
P and Q, we must have 〈Ŵi, Ŵ j〉t = δijt and hence that Ŵt is Brownian motion
under Q. In other words, under the measure Q

dXt = σ(Xt) dŴt + b(Xt) dt (47)

By the representation (10) this means the solution to (9) satisfies

u(t, x) = EQ
Xt=x[ f (XT)] = EP

Xt=x[ f (XT)ZT ] (48)

13



3. Elliptic Equation

3 Elliptic Equation

We turn now to elliptic equations whose equations and solutions do not have
an explicit time dependence. Physically, solutions to Lu = 0 may emerge as
the “steady state” of solutions to ∂tv + Lv = 0, so that ∂tv = 0. For example,
in the limit t→ ∞ the function v may approach a limit.

For elliptic equations we have representations exactly analogous to the
previous section, except that the expectation is taken at the stopping time
when the stochastic process touches the boundary our domain. First we show
that for bounded domains, these stopping times are almost surely finite.

13 proposition. Let B ⊂ Rd be any bounded open domain and Xt the diffusion
associated with a uniformly elliptic operator L. Let X0 ∈ B and τ = inf{t : Xt 6∈ B}
. Then P(τ < ∞) = 1

Proof. Without loss of generality, its sufficient to assume X0 = 0 and show
P(|Xt| exits B(0, N)) = 1. In fact, its sufficient to show |X1

t | exits [−N, N].
Now

dX1
t =

d

∑
j=1

σ1j(Xt) dW j
t + β1(Xt) dt (49)

If Mt is the martingale term, then from linearity and the covariance formula
(3) and the fact d〈Wi, W j〉t = δij dt

d〈M〉t = ∑
j

σ2
1j(Xt) dt = a11(Xt) dt (50)

Note that a11 is bounded above and below because L is uniformly elliptic.
If ρ(t) = inf{u : 〈M〉u ≥ t}, then W̃t := Mρ(t) is a continuous martingale
with quadratic variation equal to t and hence by Levy’s theorem its Brownian
motion. Note that ρ(t)− ρ(s) ≥ Λ(t− s) so ρ is strictly increasing and ρ(t)→
∞ as t → ∞. Since ρ is continuous because Xt is, and thus it has an inverse
ρ−1. In terms of W̃t we can write

X1
ρ(t) = W̃t −

t∫
0

−β1(Xs), ds (51)

Using the same argument as in proposition 12 to adjust the drift, there’s an
equivalent measure Q where Xρ(t) is a Brownian motion. In this measure, Xt
exits [N,−N] almost surely because Brownian motion does. Since null events
are the same in the two measures, Xt exits [N,−N] almost sure in our starting
measure P as well.

14
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3.1 Dirichlet Conditions

Following the same well-trod path as the last sections, let’s find a representa-
tion for elliptic equations.

14 proposition. Suppose f is bounded, let D ⊂ Rd be a bounded open domain,
and suppose u is a continuous bounded solution on D to the elliptic equation with
Dirichlet boundary conditions{

Lu = 0 in D
u(x) = f (x) on ∂D

(52)

Then u satisfies

u(x) = EX0=x[ f (Xτ)] (53)

where Xt is a diffusion associated with L and the hitting time τ = inf{t : Xt 6∈ B}.

Proof. The proof follows the same outline as proposition 3. The expression
Mt = u(Xt) is a local martingale since, by Itô’s formula

u(Xt)− u(x) = local martingale +

t∫
0

Lu(Xs) ds (54)

and the second term on the right is 0. Let tn be a sequence of times which
localized Mt and consider τn = t ∧ τn. By the optional stopping theorem

u(x) = Ex[u(Xτn)] (55)

Now τn → τ as n → ∞ since P(τ < ∞) = 1. Now u is bounded since its a
continuous function on the compact set D. Thus by dominated convergence

u(x) = Ex[u(Xτ)] (56)

This is the same as (53) because Xt is continuous so Xτ ∈ ∂D and u satisfies
the boundary condition (52).

As applications of this representation, here are two classic theorems.

15 corollary (Maximum principle). Suppose u is a solution of (52). then supD u ≤
sup∂D u

Proof. For any x ∈ D, the representation (53) implies u(x) ≤ sup∂D f .

When L = 1
2 ∆, the solutions ∆u = 0 are called harmonic functions. Clearly

he associated diffusion is d-dimensional Brownian motion Bt.

15



3. Elliptic Equation

16 corollary (Mean-value property). Let u be a harmonic function in an open
domain D. If B(x, r) ⊂ D is a ball contained in D then u satisfies the mean-value
property

u(x) =
1

ωd(r)

∫
∂B(x,r)

u dσ (57)

where dσ is the surface area element of the d-sphere and ωd(r) =
∫

∂B(x,r) dσ is the
surface area of a d-sphere.

Proof. Let v be any continuous bounded harmonic function defined on the
ball B(x, r) which satisfies v(y) = u(y) on ∂B(x, r). Then by the representation
in proposition 14, v(x) = Ex[u(Xτ)] where τ is the hitting time for B(x, r).
Now the law of Bt − B0 is invariant under rotations, so the hitting distribution
on the sphere is uniform, with density dσ/ωd(r). Therefore by the representa-
tion, any such v satisfies (57). Now u is an example of a continuous bounded
harmonic function which takes values u(y) for y ∈ ∂B(x, r), so u has the rep-
resentation.

3.2 Existence and Regular Points

To show the solution exists, we follow the same approach as for the parabolic
equation, which proceeds in three parts. Let v be be defined by (53). First
we must show that v ∈ C2 so that Lv is well defined. The same trick to
define a diffusion ∂iXt works here, which allows us to differentiate under the
expectation operator and prove regularity.

To show that v satisfies the PDE on the interior, the martingale argument
in proposition 4 goes through essentially unchanged.

The final question is whether whether the representation satisfies the bound-
ary condition, and this proves to be a bit tricky. We find the answer is not so
straightforward as the parabolic case. Let L = 1

2 ∆ so that Xt = Bt is Brow-
nian motion. Let D be the unit ball in Rd with the line segment L = {x ∈
Rd : x1 ∈ [0, 1]} removed. In the case d ≥ 3 the d − 1 dimensional projec-
tion (B2

t , B3
t , . . . , Bd

t ) almost surely never hits 0. If X0 ∈ D then Xτ 6∈ L, and
changing the value of f on L will have no effect on v given by (53).

This may seem like an artificial example, since part of the boundary is on
the interior of D, but Lesbegue showed less trivial examples have essentially
the same problem. Consider the unit ball of Rd with Θ = {x : x ≥ 0 and x2

2 +
· · ·+ x2

n ≤ f (x1)} removed. Here f : [0, 1] → [0, 1] is an increasing function
with f (0) = 0 so Θ represents a sort of cone shape, which is evocatively
named Lebesgue’s thorn. If f (x) → 0 fast enough as x → 0, then the tip is
invisible to Bt similar to how the line segment L is invisible. That is, the hitting
time distribution does not converge to a delta function as x approaches the
boundary. More precisely let κx = inf{t : |Xt| ≥ 1 given X0 = x} be the exit

16
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time from the unit ball, and let τx = inf{t : Xt 6∈ B(0, 1) \Θ} be the exit time
from the ball with the thorn removed. Then even as x → 0, P(τx = κx) ≥ δ for
some δ > 0, so v(x) need not converge to f (0).

A point y ∈ ∂D is said to be a regular point if P(τy = 0) = 1. A sufficient
condition for y to be regular is for there to be a cone V with vertex y such that
B(y, r) ∩ V ⊂ Dc. For nice domains, for example polytopes or domains with
smooth boundaries, every boundary point is regular. For all regular points on
∂D, functions with the representation (53) satisfy the boundary condition in
(52).

3.3 Other Variations

We can now consider variations of the elliptic equation, and the representa-
tions of the solutions are analogous to case of the parabolic equation. Specif-
ically, let D ⊂ Rd be a bounded open domain, and suppose u is continuous
and bounded on D, and that u satisfies the equation{

Lu− qu + g = 0 in D
u(x) = f (x) on ∂D

(58)

Then u has a representation

u(x) = Ex

 f (Xτ)e−
∫ τ

0 q(Xs) ds +

τ∫
0

g(Xs)e−
∫ s

0 q(Xr) dr ds

 (59)

Now in order for this representation to work, we need appropriate assump-
tions on q, g and f . For example, if q < 0 it may be that the expectations on
the right are not defined, even in 1 dimension when q is constant. But, more
or less, this is the right expression. An important special case is the following.

17 corollary (Poisson’s equation). Let λ be a positive real number. Suppse u is
continuous and bounded, satisfying Lu− λu + g = 0 on Rd. Then u satisfies

u(x) = Ex

 ∞∫
0

e−λsg(Xs) ds

 (60)

Proof. Here f (x) = 0, q(x) = λ. Considering a sequence of increasing do-
mains such that ∪nDn = Rd (for example, take Dn = {|x| ≤ n}), we get a
representation on that domain. If τn = inf{t : Xt 6∈ Dn} then τn → ∞. Using
dominated convergence we get a representation like (60).

An operator L in a domain D has a Green function GD(x, y) if solutions to

17
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the inhomogenous Dirichlet problem have a representation

u(x) = −
∫
D

GD(x, y) f (y) dy (61)

The Green’s function also satisfies GD(x, y) = 0 if either x or y is in ∂D.
Comparing this to the representation in 59

u(x) = −Ex

x∫
0

f (Xs) ds (62)

From this its clear that GD(x, y) is the same as the occupation time density
for Xt. Informally, GD(x, y) represents the expected number of times Xt = y
before Xt exits D. If pD(t, x, y) is the fundamental solution (transition density)
for the process Xt killed at the boundary ∂D, then gD(x, y) =

∫ ∞
0 pD(t, x, y) dt.

4 Conclusion

Itô’s formula is a key link connecting PDE’s and diffusions. A lot of insight
into the nature of solutions comes from the properties of diffusions and Brow-
nian motion.
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