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1 The Singular Value Decomposition

I am very indebted to Jean Gallier and Jocelyn Quaintance online notes "Algebra, Topology,
Differential Calculus, and Optimization Theory For Computer Science and Machine Learning" for
large parts of this presentation.

1.1 Preliminaries

Let E and F be R-vector spaces of dimensions n and m respectively. (We want dimE = n and
dimF = m and not the other way around so that the matrix A which represents f is m× n. Its all
very confusing). Let f : E → F be a linear transformation. Let f be represented by a m× n matrix
A. Let each space be endowed with an inner product, so they are both Euclidean spaces.

For a vector u ∈ E let φu : E → R be the map given by φu(v) = 〈u, v〉. This is linear by the
bilinearity of the inner product

φu(v + λw) = 〈u, v + λw〉 = 〈u, v〉+ λ〈u,w〉 = φu(v) + λφu(v)

Thus, this is the natural way to associate a vector with a linear functional. Let E∗ be the dual space
of E.

1. Theorem The map [ : E → E∗ given by u 7→ φu is linear and injective.

Proof. Linearity follows from bilinearity of 〈, 〉 since for all w ∈ E

[(u+ λv)(w) = 〈u+ λv,w〉 = 〈u,w〉+ λ〈v, ·〉 = [(u)(w) + λ[(v)(w)

which implies [(u+ λv) = [(u) + λ[(v). Injectivity follows from the positive definiteness of 〈, 〉 since
[(u) = 0 implies 〈u, v〉 = 0 for all v which implies u = 0

Since E is finite-dimensional, [ : E → E∗ is a canonical isomorphism. Denote the inverse of
bijection [ : E → E∗ by ] : E∗ → E.

For a given v ∈ F and f : E → F consider the linear functional ψf,v : E → R given by
ψf,v(u) = 〈f(u), v〉. By theorem 1, there we can represent this linear functional as 〈u, ](ψf,v)〉 for
some element ](ψf,v) ∈ E. Note that for all u ∈ E

〈u, ](ψf,v1+λv2)〉 = 〈f(u), v1 + λv2〉 = 〈f(u), v1〉+ λ〈f(u), v2〉 = 〈u, ](ψf,v1)〉+ λ〈u, ](ψf,v1)〉
= 〈u, ](ψf,v1) + λ](ψf,v1)〉

This shows the mapping v 7→ ](ψf,v) is linear.

2. Definition The adjoint of f : E → F is the unique linear transformation f∗ : F → E given by
f∗(v) = ](ψf,v). It satisfies 〈f(u), v〉 = 〈u, f∗(v)〉.
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Now the mapping ∗ : hom(E,F )→ hom(F,E) given by f 7→ f∗ is itself linear since

〈u, (f+λg)∗(v)〉 = 〈(f+λg)(u), v〉 = 〈f(u), v〉+λ〈g(u), v〉 = 〈u, f∗(v)〉+λ〈u, g∗(v)〉 = 〈u, (f∗+λg∗)(v)〉

For all u ∈ E and v ∈ F we have

〈f∗∗(u), v〉 = 〈u, f∗(v)〉 = 〈f(u), v〉

which shows that f∗∗ = f . Finally note that

〈(f ◦ g)(u), v〉 = 〈f(g(u)), v〉 = 〈g(u), f∗(v)〉 = 〈u, g∗(f∗(v))〉

from which it follows that (f ◦ g)∗ = g∗ ◦ f∗.
3. Corollary The transformations f ◦ f∗ and f∗ ◦ f are self-adjoint

In matrix terms, we can write 〈u, v〉 as u>v where u and v are both column vectors, so the
transpose u> is a row vector. Then if A represents the matrix of a linear transformation f , since
(Au)>v = u>A>v = u>(A>v), the matrix which represents f∗ is given by the transpose A>. Thus
we’ll write A∗ for A> which is the matrix which represents the adjoint transformation.

4. Theorem (Spectral decomposition) Let A be a n× n matrix with entries in R. Then A = A> if
and only if A can be written A = UΛU> where Λ is a diagonal n× n matrix and U is a orthogonal
n× n matrix (that is UU> = I).

For a proof see, for example, [2].

5. Theorem (Courant-Fischer min-max principle) Let S be a symmetric n×nmatrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λnthen

σk = min
U⊂Rn

dimU=n−k+1

max
x∈U

x>Sx

x>x

= max
U⊂Rn

dimU=k

min
x∈U

x>Sx

x>x

Proof. The ratio x>Sx/x>x is invariant under the transformation x → αx for any scalar α, so
WLOG we can restrict attention to vectors with ‖x‖ = 1, in which case the ratio is just x>Sx.

Express x in terms of the basis u1, . . . , un of eigenvectors x = x1u1 + · · ·+ xnun. Then

x>Sx

x>x
=

1.2 Singular values

In this section we’ll fix a basis for E and F and ignore the distinction between a linear
transformation and its matrix representatin A.

By corollary 3, linear transformations A∗A and AA∗ are self-adjoint. Therefore these matrices
can be diagonalized by an orthogonal matrix and they have real eigenvalues.

6. Lemma The eigenvalues of A∗A and AA∗ are nonnegative
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Proof. Suppose u is an eigenvector of A∗A with eigenvalue λ. Then

λ〈u, u〉 = 〈A∗Au, u〉 = 〈Au,Au〉 ≥ 0

Since 〈u, u〉 > 0 the claim follows.

7. Lemma If f : E → F is represented by matrix A and g : F → E is represented by matrix B
then AB and BA have the same non-zero eigenvalues

Proof. Consider

X =

(
λIm A

B In

)
and Y =

(
Im 0

−B λIn

)
It follows that

XY =

(
λIm −AB λA

0 λIn

)
and Y X =

(
λIm A

0 λIn −BA

)
Since these products are upper block triangular matrices, we can read off detXY = λn det(λIm −
AB) and detY X = λm det(λIn−BA). Therefore these polynomials in λ are equal, which shows the
characteristic polynomials of χAB(λ) and χBA(λ) are the same, up to factors of λ. So the non-zero
eigenvalues of AB and BA are equal, and have equal multiplicity.

8. Definition The eigenvalues of A∗A can be written σ2
1 , . . . σ

2
n for non-negative real numbers

σ1, . . . , σn. The positive σi are called the singular values of A. By lemma 7, A∗ and A have the same
singular values.

9. Proposition (Variational Characterization)

σk = min
S⊂Rn

dimS=n−k+1

max
x∈S
‖x‖2=1

‖Ax‖2

= max
S⊂Rn

dimS=k

min
x∈S
‖x‖2=1

‖Ax‖2

Proof. This is a direct corollary of theorem

10. Proposition The matrix A and its adjoint A∗ have the following properties

1. KerA = KerA∗A and KerA∗ = KerAA∗

2. KerA = (ImA∗)⊥ and KerA∗ = (ImA)⊥

3. dim ImA = dim ImA∗

4. A,A∗, A∗A,AA∗ all have the same rank.

5. Let uk be the orthornormal basis of eigenvectors of A∗A, where uk is associated with eigenvalue
σ2
k. Then the vectors Aui are orthogonal and have length σi

Proof. 1. For the first equality, clearly if Au = 0 then A∗Au = 0. Conversely if A∗Au = 0 then
〈Au,Au〉 = 〈A∗Au, u〉 = 0 and hence Au = 0 since the inner product is positive definite. The
second equality follows from the first substituting A∗ for A.

2. From the definition of the adjoint 〈Au, v〉 = 〈u,A∗v〉 for all u ∈ E and v ∈ F so Au = 0 iff Au⊥v
for all v ∈ F iff u⊥A∗v for all v ∈ F iff u ∈ (ImA∗)⊥. The second equality follows from the first
substituting A∗ for A.
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3. Note dim(ImA)+dim(KerA) = n by the rank-nullity theorem. Also dim(ImA∗)+dim(ImA∗⊥) = n

by decomposing E into orthogonal subspaces. By 2 we have dim(KerA) = dim(ImA∗)⊥ so we
conclude dim ImA = dim ImA∗.

4. The equality rankA = rankA∗ is just a restatement of 3. Since rankA∗A+ dim KerA∗A = n =

rankA+ dim KerA so rankA = rankA∗A follows at once from 1. Substituting A∗ for A we get
rankA∗ = rankAA∗ showing all these ranks are equal.

5. Note 〈Aui, Auj〉 = 〈A∗Aui, uj〉 = σ2
i 〈ui, uj〉 = σ2

i δij . So if i 6= j then Aui and Auj are orthogonal
and if i = j we see ||Aui|| =

√
σ2
i = σi

1.3 The Main Theorems

11. Theorem (Singular Value Decomposition) Let f have singular values σ1, . . . , σr. Given f : E →
F we can decompose into orthogonal direct sums E = E′ ⊕ ker f and F = F ′ ⊕ ker f∗ where E′ has
an orthonormal basis u1, . . . , ur and F ′ has orthonormal basis v1, . . . , vr and

f(uk) = σkvk and f∗(vk) = σkuk for k ≤ r

Letting ur+1, . . . , un be an orthonormal basis for ker f and vr+1, . . . , vm be an orthonormal basis for
ker f∗ we have

f(uk) = 0 and f(vk) = 0 for k > r

Proof. We refer repeatedly to proposition 10. Let u1, . . . , un be the orthonormal basis of eigenvec-
tors for f∗ ◦ f where u1, . . . , ur are associated with the singular values σ1, . . . , σr and ur+1, . . . , un
are the basis for ker f∗ ◦ f . By 1, ker f∗ ◦ f = ker f so f(uk) = 0 for k = r + 1, . . . , n. For k = 1, . . . , r

let vk = 1
σk
f(uk). By (4) the vk are orthonormal and they span Im f so they form a basis for Im f .

By definition they satisfy f(uk) = σkvk. Furthermore f∗(vk) = 1
σk

(f∗ ◦ f)(uk) =
σ2
k

σk
uk = σkuk. Now

extend the vk to an orthonormal basis for all of F by adding vr+1, . . . , vm, an orthonormal basis for
(Im f)⊥. By (2) we have f∗(vk) = 0 for these new vectors with k = r + 1, . . . ,m.

We constructed the vk from the image of the eigenvectors uk of f∗ ◦ f , but given the decomposi-
tion there is a duality. The vk are the eigenvectors of f ◦ f∗ and the uk could be constructed from
their image.

12. Theorem (Matrix SVD) For every real m× n matrix A, there are two orthogonal matrices U
(n×n) and V (m×m) and a diagonal m×n matrix D such that A = V DU>, where D is of the form

D =



σ1 · · ·
σ2 · · ·

...
...

. . .
...

· · · σn
0 · · · 0
...

...
. . .

...

0 · · · 0


or D =


σ1 · · · 0 · · · 0

σ2 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

· · · σm 0 · · · 0



where σ1, . . . , σr are the singular values of A and σr+1 = · · · = σmin(m,n) = 0 . The columns of U
are the eigenvectors of A>A and the columns of V are the eigenvectors of AA>.
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Proof. Let uk, vk, σk be as in theorem 11. Perform a change of basis on E to u1, . . . , un and a change
of basis on F to v1, . . . , vm. In terms of this new basis, the linear transformation f is represented
by the matrix A′ = V −1AU = V >AU where U has columns uk and V has columns vk. (Here
V −1 = V > since V is orthogonal by virtue of the fact the vk are orthonormal). By theorem 11, f has
a simple form in terms of these bases, and given by A′ = D. From this we immediately conclude
A = V DU−1 = V DU> is a decomposition of A in terms of a diagonal matrix and two orthogonal
matrices.

There’s another form which is sometimes useful

13. Theorem (Compact Matrix SVD) For every real m× n matrix A with singular values σ1, . . . , σr,
there is a n × r matrix U0 with orthonormal columns and a m × r matrix V0 with orthonormal
columns and a r × r diagonal matrix

D0 =


σ1

σ2
. . .

σr


such that A = V0D0U

>
0

Proof. Using the notation theorem 11, consider A0 the matrix which represents the transformation
f0 : E′ → F ′. If E′ has basis u1, . . . , ur and F ′ has basis v1, . . . , vr then A0 = D0. Let π : E → E′ be
the projection onto the subspace. In terms of the basis of E is u1, . . . , un, then the projection has
the matrix P =

(
Ir 0

)
. Let ι : F ′ ↪→ F be the inclusion map. In terms of the basis v1, . . . , vm of F ,

the inclusion has matrix representation Q =

(
Ir
0

)
.

So A = V QD0PU
>. If we let V0 = V Q and U>0 = PU> we get the desired decomposition.

14. Corollary There are orthonormal vectors u1, . . . , ur and v1, . . . , vn and singular values σ1, . . . , σr
such that A =

∑r
i=1 σiviu

>
i

Proof. Let A′ =
∑r
i=1 σiviu

>
i . It suffices to show that A′u = Au for every u in some basis of

E. This is straitforward to verify for the basis u1, . . . , un of eigenvalues of A∗A since A′uj =∑r
i=1 σiviu

>
i uj =

∑r
i=1 σiδijvi = σjvj .

This representation gives rise to the “low-rank approximation” where we truncate this expansion
to remove terms with small singular values.

1.4 Eigenvalues and Singular Values

Consider the matrix

A =


1 2 0 . . . 0

0 1 2 . . . 0
...

. . .
...

0 0 0 . . . 2

0 0 0 . . . 1

 A>A =


1 2 0 . . . 0 0

2 5 2 . . . 0 0
...

. . .
...

...

0 0 0 . . . 5 2

0 0 0 . . . 2 5


(A>A is tridiagonal). The eigenvalues of A are all 1, but the singular values have a wide spread
with σ1/σn = cond2(A) ≥ 2n−1
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Suppose A is a complex square matrix with eigenvalues λ1, . . . , λn and singular values σ1, . . . , σn.
(Note that previously I only considered real matrices, but all the results carry over with the proper
modifications). In general, the singular values and the eigenvalues of a complex square matrix can
be quite different. However, they are related by

σ2
1 · · ·σ2

n = det(A∗A) = |det(A)|2 = |λ1|2 · · · |λn|2

so we have |λ1| · · · |λn| = σ1 · · ·σn.
Even if A is Hermitian, the singular values and the eigenvalues will be different, if A has

negative eigenvalues. For example, −I = (I) · (−I) · (I) is a valid spectral decomposition, but not a
valid SVD. On the other hand −I = (−I) · (I) · I is a valid SVD.

15. Proposition (Weyl inequalities) For any complex n × n matrix A if λ1, . . . , λn ∈ C are the
eigenvalues of A and σ1, . . . , σn ∈ R+ are the singular values of A, listed so that |λ1| ≥ |λ2| ≥ · · · ≥
|λn| and σ1 ≥ σ2 ≥ · · · ≥ σn then

|λ1| · · · |λn| = σ1 · · ·σn
|λ1| · · · |λr| ≤ σ1 · · ·σr for r < n

For a proof see [1]

1.5 Polar Form

16. Definition A pair (R,S) such that A = RS with R orthogonal and S symmetric and positive
semidefinite is called a polar decomposition of A

17. Proposition Every matrix A ∈Mm,n(R) has a unique polar form

Proof. Let the SVD of A be given by A = V DU>. Letting R = V U> and S = UDU> gives the polar
form.

TODO uniqueness

Its straightfoward to go the other way, and express the SVD in terms of the polar form. Given
A = RS let UDU> be the spectral decomposition of S. Then if we let V = RU we get A = V DU>

where V and U are orthogonal and D is diagonal and positive seimidefinite.

1.6 Matrix Norms

18. Definition A matrix norm is a norm on the space of square n×n matrices Mn(R) is a norm on
the vector space Mn(K) (and hence it satisfies positivity, homogeneity and the triangle inequality)
which also satisfies ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈Mn(K)

19. Definition The spectral radius of a square matrix A ∈ Mn(R) is the magnitude of the
maximum eigenvalue ρ(A) = max1≤i≤n |λi|
20. Proposition For any matrix norm ‖·‖ on Mn(R) we have ρ(A) ≤ ‖A‖

Proof. First we assume ‖·‖ is a norm over Mn(C). Let λ be an eigenvalue of A associated with
eigenvector u and let U be the n× n matrix whose columns are all equal to u. Then since AU = λU

|λ|‖U‖ = ‖λU‖ = ‖AU‖ ≤ ‖A‖‖U |

so |λ| ≤ ‖U‖ for any eigenvalue λ. Maximizing over all eigenvalues gives the result.
In the case of a matrix norm over real matrices, take any matrix norm ‖·‖c over Mn(C) and not it

is also a matrix norm over Mn(R). Since all norms of a finite dimensional vector space (like Mn(R))
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are equivalent, we have ‖A‖c ≤ C‖A‖ all A ∈ Mn(R) for some constant C. Now ρ(Ak) = ρ(A)k

since the eigenvalues of Ak are λk where λ is an eigenvalue of A. Therefore

ρ(A)k = ρ(Ak) ≤ ‖Ak‖c ≤ C‖Ak‖ ≤ C‖A‖k

Taking kth roots we get ρ(A) ≤ C1/k‖A‖, and letting k →∞, we get the desired inequality.

21. Definition The Frobenius norm ‖·‖F is the norm ‖·‖2 thinking of Mn(R) as the vector space
Rn

2

, which can be written as

‖A‖F =

 n∑
i,j=1

a2ij

1/2

=
√

tr(AA∗) =
√

tr(A∗A)

22. Proposition Given a norm on Rn, there is an induced matrix norm called the operator norm
‖·‖op given by the function

‖A‖op = sup
x∈Rn,x 6=0

‖Ax‖
‖x‖

= sup
x∈Rn,‖x‖=1

‖Ax‖

Different norms on Rn give rise to different matrix norms. The operator norm corresponding to
‖·‖2 is called the spectral norm.

23. Definition For any matrix A ∈ Mm,n(C) let σ1 ≥ · · · ≥ σr be the singular values. For any
1 ≤ k ≤ min(m,n) and p ≥ 1

Nk,p = (σp1 + · · ·+ σpk)1/p

(We take σk = 0 for k > r even though its not strictly a singular value since its not positive. It
doesn’t really matter because it doesn’t change the formula). This is called the Ky Fan p-k-norm.
When p = 1 this is called the Ky Fan k-norm. When k = min(m,n) then Nk,p is called the Schatten
p-norm.

When m = n the Ky Fan norms are matrix norms.

24. Proposition 1. The spectral norm ‖·‖2 is
√
ρ(A∗A) = σ1 = N1(A)

2. The Frobenius norm ‖·‖F is
√

tr(A∗A) = (σ2
1 + · · ·+ σ2

q )1/2 = Nq,2 (where q = min(m,n)).

3. The trace norm tr((A∗A)1/2) = σ1 + · · ·+ σq = Nq(A)

Proof. 1. Note ‖Au‖2 = 〈Au,Au〉 = 〈u,A∗Au〉, so the square of the operator norm is just the
Reyleigh quotient for the self-adjoint matrix A∗A. As such it equals the maximum eigenvalue of
A∗A, which is ρ(A∗A) = σ2

1. Taking square roots yields the desired equation

2. The eigenvalues of A∗A are σ2
1 , . . . , σ

2
r , so

√
trA∗A = (σ2

1 + · · ·+ σ2
r)1/2 as desired

3. In terms of the SVD of A = V DU>, note that A∗A = UD2U>. Therefore we can write (A∗A)1/2 =

UDU>, which has eigenvalues σ1, . . . , σr. So tr((A∗A)1/2) = σ1 + · · ·+ σr as desired.

For a proof see [1]

1.7 Low-rank approximation

25. Proposition Let A be an m× n matrix of rank r and let V DU> = A be an SVD for A. Write
ui for the columns of U , vi for the columns of V , and σ1 ≥ σ2 ≥ · · · ≥ σr for the singular values of
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A. Then a matrix of rank k < r closest to A (in the ‖·‖2 norm) is given by

Ak =

k∑
i=1

σiviu
> = V diag(σ1, . . . , σk, 0, . . . , 0)U>

and ‖A−Ak‖2 = σk+1

Proof. TODO

What about the Frobenius norm? See Gallier and Quaintance problem 23.4

2 Least Squares Approximation

2.1 The Moore-Penrose Pseudoinverse

26. Definition For a m × n real matrix A with SVD expansion A =
∑r
i=1 σiviu

>
i , the Moore-

Pentrose pseudo-inverse is given by

A+ =

r∑
i=1

1

σi
uiv
>
i

Equivalently, given SVD A = V DU>, we have A+ = UD+V > where D+ is a n×m diagonal matrix
whose entries are 1

σ1
, . . . , 1

σr
, 0, . . . , 0.

27. Lemma A+A =
∑r
i=1 uku

>
k and AA+ =

∑r
i=1 vkv

>
k

Proof. By direct computation

A+A =

r∑
i=1

r∑
j=1

σj
σi
uiv
>
i vju

>
j =

r∑
i=1

r∑
j=1

σj
σi
δijuiu

>
j =

r∑
i=1

uku
>
k

A similar calculation gives the expression for AA+,

More explicitly, we have

A+Auk =

{
uk k ≤ r
0 k > r

AA+vk =

{
vk k ≤ r
0 k > r

Thus, A+A is the projection operator onto the orthogonal complement of kerA, which is the same
as ImA∗. A similar statement holds for AA+.

In our notation, r = rankA, and it equals the number of singular values of A. If r = n (which is
equivalent to A being injective) then A+ is a left inverse of A. If r = m (which is equivalent to A
being surjective) then A+ is a right inverse of A. If A is square and nonsingular, then both these
conditions hold, and A+ = A−1. In any case, A+A is the identity on the largest possible subspace
of E on which any composition of the form BA could be the identity, namely the orthogonal
complement of kerA. Thus A+ is as “close” to an inverse of A as is possible.

28. Proposition The Moore-Penrose inverse A+ satisfies the following properties

1. AA+A = A

2. A+AA+ = A+

3. A+A is symmetric

4. AA+ is symmetric
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Conversely, any matrix which satisfies these properties is the Moore-Penrose inverse.

Proof. To show (1) use the expression for AA+ in the lemma and perform a similar calculation as
the lemma except use the expansion for AA+ instead of the expansion for A+. The calculation for
(2) is the same, swapping u’s for v’s.

To show (4), using the expression from the lemma

(A+A)> =

(
r∑
i=1

uku
>
k

)>
=

r∑
i=1

(uku
>
k )> =

r∑
i=1

uku
>
k = A+A

A similar calculation gives (4).
Now suppose B1 and B2 satisfy the four properties above. Note that BA = (BA)∗ = A∗B∗

where B can be B1 or B2. Similarly AB = B∗A∗. Therefore

B1 = B1AB1 = A∗B∗1B1 = A∗B∗2A
∗B∗1B1 = B2AA

∗B∗1B1 = B2AB1AB1 = B2AB1

and

B2 = B2AB2 = B2B
∗
2A
∗ = B2B

∗
2A
∗B∗1A

∗ = B2AB2B
∗
1A
∗ = B2AB2AB1 = B2AB1

Hence B1 = B2 and the pseudoinverse is unique.

29. Corollary If the dimensions of A satisfy m > rankA = n (so A is tall and has full column
rank), then A+ = (A∗A)−1A∗. If the dimensions of A satisfy n > rankA = m (so A is wide and has
full row rank), then A+ = A∗(AA∗)−1

Proof. This is just a matter of verifying (1)-(4) in proposition 28. First consider the case of a tall
matrix A and let B = (A∗A)−1A∗. First note BA = (A∗A)−1A∗A = I. Clearly this is symmetric and
we immediately get ABA = AI = A and BAB = IB = B. Finally for AB = A(A∗A)−1A∗, using
(M−1)∗ = (M∗)−1 its straitforward to verify (AB)∗ = AB. A similar set of calculations hold for the
wide matrix A.

From property (1) and (2) we see (A+A)2 = A+A and (AA+)2 = AA+. Since by (3) and (4)
these matrices are symmetric, we see again these are orthogonal projections onto the range of A
and A∗ respectively.

3 Least Squares regression

Suppose we have an overdetermined set of linear equations Ax = b so that m > n. We want to
find the closest approximation to a solution, x∗ = arg min‖Ax− b‖2. In this section we’ll always be
using this norm, so we’ll drop the subscript

Expanding the inner product,

‖Ax− b‖2 = 〈Ax,Ax〉 − 2〈Ax, b〉+ 〈b, b〉 = x∗A∗Ax− 2x∗A∗b+ ‖b‖2

This is quadratic in the components of x. Taking gradients, the first-order condition is

∇x‖Ax− b‖2 = 2A∗Ax− 2A∗b = 0

or

A∗Ax = A∗b

9
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These linear equations are called the normal equation for least squares.

30. Theorem Every linear system Ax = b where A is an m × n real matrix has a unique least
squares solution x+ of smallest norm.

Proof. Let’s consider the geometry of the situation. We can decompose Rm = ImA⊕ (ImA)⊥ into
a subspace which is the range of A and its orthogonal complement. I claim there is a unique point
in ImA which is closest to b, and this point is the orthogonal projection of b onto ImA.

Say b = b◦ + b⊥ where b◦ ∈ ImA and b⊥ ∈ (ImA)⊥ is the unique representation of b. Then for
any y ∈ ImA we have

‖y − b‖2 = ‖y − b◦ − b⊥‖2 = ‖y − b◦‖2 + ‖b⊥‖2

since y − b◦ ∈ ImA and b⊥ ∈ ImA⊥ are orthogonal. Clearly this is minimized when y = b◦, which
occurs when y equals the orthogonal projection of b onto the subspace ImA. Let y+ denote the
least squares element of ImA.

Now it may be there are multiple x ∈ Rn such that y+ = Ax. Say x and x′ are two solutions.
Then note Ax = y+ = Ax′ iff A(x − x′) = 0 iff x − x′ ∈ kerA, which shows any two solutions
are related by a member of kerA. Thus we can decompose the domain of A into orthogonal
complements Rn = kerA ⊕ kerA⊥, for any solution Ax = y+ we can uniquely write x = x◦ + x⊥

where x◦ ∈ kerA and x⊥ ∈ kerA⊥. Since ‖x‖2 = ‖x◦‖2 + ‖x⊥‖2, the unique minimum length vector
x+ satisfying Ax+ = y+ is the one with no component in kerA. We can find x+ among all solutions
by taking any solution and projecting it onto kerA⊥.

The preceding shows that a necessary and sufficient condition for x to minimize ‖Ax − b‖ is
that Ax − b ∈ (ImA)⊥. But by proposition 10, this is equivalent to Ax − b ∈ kerA∗. Therefore,
A∗(Ax− b) = 0 and we recover the normal equations A∗Ax = A∗b.

31. Theorem The element x+ described in theorem 30 is given by x+ = A+b, where A+ is the
Moore-Penrose pseudoinverse of A

Proof. First assume A is diagonal and we can search for the minimum length solution which
minimizes ‖Dx − b‖. By inspection, x+ = (b1/σ1, . . . , br/σr, 0, . . . , 0)> has the desired properties,
since it exactly zeros the first r coordinates in b and the coordinates in positions r + 1, . . . ,m

are unaffected by Ax. The minimality of x+ follows from the fact the x-coordinates in positions
r + 1, . . . , n, have no effect so x+ is minimal when these are all 0. Thus the solution is x+ = D+b.

In the general case, we can apply an orthogonal transformation to Rm and Rn to get an
equivalent problem. Let A have SVD A = V DU>. So, x+ is the minimum length solution which
minimizes ‖Ax− b‖, if and only if it is also the minimum length solution which minimizes ‖V >Ax−
V >b‖ for any orthogonal tranformation V . Similarly x+ is the minimum length solution which
minimizes ‖Ax− b‖ iff U>x+ is the minimum length solution which minimizes ‖AUx− b‖. Here the
minimality of U>x follows from the fact ‖U>x+‖ =‖x+‖.

So we find the solution x+ satisfies Ux+ = D+V >b, and hence x+ = UD+V >x = A+x

For an alternative proof which is less computational, we can verify the normal equations for
x+ = A+b, which are A∗AA+b = A∗b. Let b = b◦ + b⊥ as above with b◦ ∈ ImA and b⊥ ∈ (ImA)⊥.
Now AA+ is the identity on ImA and 0 on (ImA)⊥, so AA+b = b◦ and A∗AA+b = A∗b◦. On the
other hand, since (ImA)⊥ = kerA∗ we have A∗b = A∗(b◦ + b⊥) = A∗b◦, and we’ve verified the
solution. To verify A+b is minimal length, observe A+b ∈ (kerA)⊥ = ImA∗ since ImA+ = ImA∗.
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