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Summary

This essay examines the relationship between various modes of convergence for Fourier series whose co-
efficients are symmetric independent random variables, along with applications of those series to harmonic
analysis

Introduction

This essay examines the convergence properties of the random trigonometric series such as

∞

∑
n=0

ξneiωn eitn (1)

Here the ξmeiωn are independent and symmetric complex random variables. This was first investigated
by Paley and Zygmund in series of papers in the 1930’s [1]. To give some context, Payley and Zygmund
published their article just a few years after Komolgorov proved the famous three-series criterion for the
convergence of random series, and after Weiner discovered a random Fourier series for Brownian motion.
This essay closely follows the approach of Kahane in [2], which is the classic reference on this material.

In addition to their intrinsic interest, random methods allow for insights into harmonic analysis more
generally. Random constructions sometimes yield examples of series with certain properties which are hard
to construct explicitly.

Our primary goal is to show that given the independent, symmetric random Fourier coefficients ξneiωn ,
several convergence properties of (1) are related. Our main result shows that (1) represents a function almost
surely, if and only if it converges almost surely, if and only if it converges in Lp(T) for all p ∈ [0, 1). Also (1)
represents a continuous function almost surely if and only if it is in L∞(T) almost surely.

Wiener Process

Before moving on, let’s consider one motivating example. The Wiener process is the stochastic process
defined by three properties: W(0) = 0, W(t) is almost surely continuous everywhere, and W(t) has
independent increments where W(t)−W(s) has a normally distributed with mean 0 and variance t− s.
There exists a unique random process with these properties (for a proof see [3]). The Wiener process playes a
central role in probability theory, as well as in statistics and applied mathematics.

Here we provide a heuristic construction, which also shows a representation of the Wiener process as a
random Fourier series. Let ek be any orthonormal basis of L2(T) and let ζk be independent Gaussian random
variables with mean 0 and variance 1. Consider the sum W(t) = ∑k ζk

∫ t
0 is a Weiner process. Its Gaussian

since the ζk, and the sample paths are continuous since fixed values of ηk, each
∫ t

0 ek(t) are continuous. To
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see it satisfies the covariance property, note that 1[0,t) = ∑k ek
∫

T
ek1[0,t) = ∑k ek

∫ t
0 ek. Therefore by Parseval’s

thoerem

∑
k

∫ s

0
ek

∫ t

0
ek =

∫
T

1[0,t)1[0,s) = s ∧ t (2)

The expression the left is what you get calcuating EW(s)W(t) term by term, and the expression on the right
is the desired expression for the covariance. Thus, W(s) represents a Weiner process.

If we take the Fourier basis given by e0(x) = 1√
2π

, en(x) = 1√
2π

einx for n 6= 0, then

W(t) =
ζ0√
2π

t + ∑
n 6=0

ζn√
2πni

(eint − 1) (3)

This is called the Fourier-Wiener series, and is itself in the form of a random Fourier series. This example
also shows the interplay of L2(Ω) and L2(T) for functions defined by random Fourier series.

1 Random Series

Before wading into the properties of random Fourier series, first lets collect some basic facts about probability
and convergence.

Definition. A random variable is symmetric if the ξ and −ξ have the same distribution. If ξ takes values in
R then Eξ = 0.

This study will concern itself only with symmetric random variables. These will turn out to have nice
properties which greatly facilitate the study of random series. Here are some of the particular series which
we will examine in more detail.

Definition. Let uk be non-random elements of a Banach space. A Rademacher series is given by ∑k εkuk where
εk are independent random variables which takes on values ±1 with equal probability. A Steinhaus series is
given by ∑k eiωk uk where ωk are independent uniform random variables in [0, 1]. A Gaussian series is given
by ∑k ζkuk where ζk are normal random variables.

It will turn out that the Rademacher series is a fundamental object for understanding the convergence
of general symmetric random series. To understand why, first note that a general symmetric random
variable can be written ξ = εν where ν ≥ 0 and ν is independent of ε. Therefore statements about
∑k ξkuk = ∑k εkνkuk can be analyzed by first conditioning on the values νk then analyzing the Rademacher
series with coeffients given by νkuk. Essentially this technique is Fubini’s thoerem, E f (ξ, η) =

∫
f (s, t)µ⊗

ν(ds dt) =
∫

µ(ds)
∫

f (s, t)ν(dt) =
∫

g(s)µ(ds) = Eg(s) where g(s) = E f (s, η). A sufficient condition for
this technique to work is that E| f (ξ, η)| < ∞.

One situation where this approach can be strikingly successful is in proving and event happens almost
surely. Let A be an event, and f = 1A. The analysis in the preceding paragraph can be summarized this way:
if a random series has a certain property almost surely for every Rademacher series formed by fixed values
of νk, then it has the property almost surely. Kahane [2] calls this the “principle of reduction”, Kallenberg [3]
calls this “conditioning”. This is useful since Rademacher series often allow for sharp quantitative analysis
which generic symmetric series resist.

Given their centrality, its interesting to provide a concrete model for this probability space of Rademacher
functions. Take Ω = [0, 1] and endow it with the Lesbegue measure. In this setting, we can represent the nth
Rademacher function rn(x) : Ω→ {±1} in terms of the bn, the nth binary digit of x, by rn(x) = 2bn(x)− 1.
Then any statement about the joint distribution of some εk can be translated in to statements about subsets
of [0, 1] and the behavior of the rn.

The properties we will study, such as convergence, boundedness and continuity, do not depend on any
finite set of the ξk. These properties are unchanged if a finite number of the values of ξk are adjusted, the
events under consideration are independent of any finite number of ξk. However, the events are in the
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probability space generated by the values of the ξk. This leads to a curious situation. For the events under
consideration, the probabilities are trivial in the sense that they are zero or one. This idea is captured in the
following theorem.

1.1 Theorem (Komolgorov 0-1 law). Let A be an event which depends on independent random variables ξk, but
does not depend on the particular values of any finite subcollection. Then P(A) = 1 or P(A) = 0. In particular, ∑k ξk
converges almost surely or almost never.

Proof. (sketch) The event A is independent of any event which is defined by the values of ξ1, . . . , ξn. But
then A is independent of any event defined by ξ1, ξ2, . . . . Since A is such an event, by independence,
P(A) = P(A ∩ A) = P(A)2.

1.1 Concentration inequalities

This section records some of the quantitative bounds which allows us to analyze convergence. As a
benchmark, its worth comparing these with teh Markov inequality which states that for any positive function
φ, P{φ(ξ) > rE(φ)} ≤ 1

r .

1.2 Theorem (Paley-Zygmund inequality). Given ξ is a R+-valued random variable, P(ξ > rEξ) ≥ (1− r)2
+Eξ2.

For independent symmetric ξk,
P{(∑

k
ξk)

2 ≥ r ∑
k

ξ2
k} ≥ (1− r)2/3 (4)

Proof. Start with Eξ = Eξ1{ξ≤r} + E1{ξ>r}. We can bound the first term by rEξ and use Cauchy-Schwartz to
bound the second term

Eξ1{ξ>rEξ} ≤ (Eξ2)1/2(E12
{ξ>rEξ})

1/2 (5)

which gives the first inequality.
For the second inequality, first consider the case where ξk = εkak for non-random ak. Then

E(∑
k

ξk)
4 = ∑

k
a4

k + 6 ∑
j<k

a2
j a2

k ≤ 3(∑
k

a2
k)

2 = 3E ∑
k

ξ2
k (6)

since for distinct i, j, k, l,
Eξiξ

3
j = Eξiξ jξ

3
k = Eξiξ jξkξl = 0 (7)

Now apply the above inequality to ξ = (∑k ξ)2.
For the general symmetric ξk write ξk = εkηk and use the principle of reduction. Let A = {(∑k ξk)

2 ≥
r ∑k ξ2

k}. The argument above shows that P(A) ≤≥ Eη(1− r)2/3 when η is fixed. Integrating over the
distribution for η shows the total probability satisfies the same inequality.

The previous result gives a lower bound on the probability of large sums. The next gives an upper bound.

1.3 Theorem (Komolgorov inequality). Let ξk be independent random variables with mean zero and let Sn =
ξ1 + · · ·+ ξn.

P{sup
n
|Sn| > r} ≤ r−2 ∑

n
Eξ2

n, r > 0 (8)

Proof. We may assume Eξ2
n < ∞, since otherwise the inequality is trivial. Let τ = inf{n : |Sn| > r}. Now τ

depends only on ξ1, . . . , ξk so Sn − Sk = ξk+1 + . . . ξn so its independent of the event {τ = k}. Therefore

∑
k≤n

Eξ2
k = ES2

n ≥ ∑
k≤n

E[S2
n; τ = k] ≥ ∑

k≤n
E[S2

k ; τ = k] + 2E[Sk(Sn − Sk); τ = k]

By independence E[Sk(Sn − Sk); τ = k] = E[Sn − Sk]E[Sk; τ = k] = 0. Also E[S2
k ; τ = k] ≥ r2P{τ ≤ n}. So

as n→ ∞
∑
k

Eξ2
k ≥ r2P{τ < ∞} = r2P{sup

k
|Sk| > r} (9)
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Next is a result which sometimes allows us to bootstrap probability estimates for random symmetric
series into much stronger ones.

1.4 Theorem (Reflection inequality). Let ξk be independent symmetric random variables, and Sn = ξ1 + · · ·+ ξn.
If Sn → S converges almost surely then

P{sup
n
|Sn| > r} ≤ 2P{|S| > r} (10)

Proof. Let τ = min{n : |Sn| > r}. Then T = S− Sn = ∑k≥n+1 ξk is symmetric, and independent of {τ = n}
and Sn (since those depend only on ξ1, . . . , ξn. Now |Sn| ≤ 1

2 (|Sn + T|+ |Sn − T|) so max(|Sn + T|, |Sn −
T|) ≥ |Sn|. By symmetry {|Sn + T| ≥ |Sn − T|} has the same probability as {|Sn + T| ≤ |Sn − T|}, and thus
it has probability at least 1

2 . Therefore

P{|S| > r, τ = n} ≥ P{|S| ≥ |Sn|, τ = n} ≥ 1
2

P{τ = n}. (11)

Summing over n results in P{S > r} ≥ 1
2 P{τ < ∞} = 1

2 P{max|Sn| > r}.

Each of the prior two theorems use a stopping-time argument to get an upper bound for a maximal in-
equality. The techniques is reminiscent of the approach used to prove the Calderón-Zygmund decomposition,
though they concern the measures of certain sets rather than the values of integrals.

1.2 Convergence

As a warm up, let’s use the Komolgorov inequality to show convergence for mean-zero series in L2(Ω).

1.5 Proposition. Suppose ξk are independent with mean 0. Then ∑k ξk converges a.s. if ∑k Eξ2
k < ∞.

Proof. Let Sn = ∑n
k=1 ξk. By theorem 1.3, P(supk≥n|Sn − Sk| > r) < r−2 ∑k≥n Eξ2

k . Taking the limit n → ∞,
P(limk→∞ supn≥k|Sn − Sk| > r) = 0. Taking a sequence of r → 0, ths becomes P(limk→∞ supn≥k|Sn − Sk| >
0) = 0. Therefore Sn satisfies a Cauchy criterion for convergence a.s..

Next is the main theorem which characterizes convergence of symmetric series.

1.6 Theorem (Series with symmetric terms). Suppose ξk are independent symmetric random variables. The
following are equivalent (a) ∑k ξk converges a.s. (b)∑k ξ2

k converges a.s. (c) ∑k Eξ2
k ∧ 1 < ∞

Proof. Let ηk = ξk1{|ξk |≤1} and assume ∑ Eη2
k < ∞. Then thoerem 1.5 implies that ∑k ηk converges a.s..

Also, ∑k P{|ξk| > 1} ≤ ∑k Eξ2
k ∧ 1 < ∞ implies that ∑k 1{|ξk| > 1} < ∞ a.s. (otherwise the expectation of

this sum would be infinite). Thus ξk and ηk differ by at most finitely many terms a.s.. So ∑k ξk converges
whenever ∑k ηk does, namely almost surely. Therefore (c) implies (a).

Conversely, assume ∑ Eη2
k = ∞. Then by thoerem 1.2, P(|∑n

k=1 ηk| > r(∑n
k=1 Eη2

k )
1/2) ≥ (1− r2)2/3 > 0.

Letting n→ ∞ this means ∑n
k=1 ηk = ±∞ diverges with positive probability. By the zero-one law, ∑n

k=1 ηk
diverges a.s., and therefore so does ∑n

k=1 ξk. This shows that (a) implies (c).
Next, note that for positive series, deterministic or random, limn ∑n

k=1 ak = supn ∑n
k=1 ak so showing

convergence is same as showing ∑∞
k=1 ak < ∞. If ∑ Eξ2 ∧ 1 < ∞, then by Fubini’s theorem E ∑k(ξ

2
k ∧ 1) < ∞,

and therefore ∑k(ξ
2
k ∧ 1) < ∞ a.s.. Furthermore, ∑k 1{ξ2

k > 1} < ∑k(ξk ∧ 1) < ∞ a.s.. When the later sum is
finite then ξk < 1 for only finitely many values of k. Replacing the finitely many η2

k with ξ2
k does not affect

convergence, so ∑k ξ2
k < ∞ a.s.. This shows (c) implies (b).

Finally, to see that (b) implies (c), compare the series term-by-term to conclude ∑(ξ2
k ∧ 1) ≤ ∑ ξ2

k < ∞.
So, replacing ξ2

k with ξ2
k ∧ 1 if necessary, assume without loss of generality assume that ξ2

k ≤ 1 for all k. In

this case 1− ξ2
k ≤ e−ξ2

k ≤ 1− aξ2
k where a = 1− e−1. Therefore

0 < E exp

(
−∑

k
ξ2

k

)
= ∏

k
Ee−ξ2

k ≤∏
k
(1− aEξ2

k) ≤∏
k

e−aEξ2
k = exp

(
−a ∑

k
Eξ2

k

)
(12)
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which shows ∑k Eξ2
k < ∞.

While its beyond the scope of this essay, the convergence of random series general random variables can
be analyzed by symmetrization. If ξk are independent random variables (not necessarily symmetric), then
take ξ ′k to be random variables with the same distribution as ξk. the random variables ξk − ξ ′k are symmetric.
This type of reasoning leads to the Komologorov three-series theorem which characterizes convergence in
general. See [3] for more details.

Next we consider summability methods for random series. Summability matrices are key for analyzing
the pointwise convergence properties of Fourier series. However, unlike for deterministic series, summability
does not improve the convergence characteristics of random symmetric series.

Definition. A summation matrix (amn) is any series of numbers satisfying limm→∞ amn = ∞. Given a series
∑n vn consider the series wm = ∑n amnvn. If each wm and w = limm wm exists, then the series is said to be
a-summable and w is the a-sum. If wn is bounded then the series is a-bounded

Example. The Césaro method uses the summation matrix amn = 0 ∧ (1− n
m ). The Abel-Poisson method

uses the summation matrix amn = rn
m. When the amn = 1n≤m, the wm are just the partial sums.

1.7 Proposition. Let ξk be independent symmetric random elements and let amn be a summation matrix. If the series
∑n ξn is a.s. a-summable, it converges a.s..

Proof. Our first task is to choose a matrix bmn which resembles the partial sums such that the series is
b-summable. Choose a sequence εp ↓ 0. Because limm amn → 1, for fixed p and large enough m,

P

(∣∣∣∣∣∑n≤p
(1− amn)ξn

∣∣∣∣∣ > εp

)
< εp (13)

Say this happens for m > mp. Furthermore, since ∑mpn ξn converges a.s., the tail converges to 0 in probability,
so for some qp

P

∣∣∣∣∣∣ ∑
n≥qp

amnξn

∣∣∣∣∣∣ > εp

 < εp (14)

Therefore define a new summation matrix bpn by bpn = 1 if n ≤ p and bpn = 0 if n > qp and bpn = amp p for
the values p < m ≤ qp. Therefore

P

(∣∣∣∣∣∑n
(bpn − ampn)ξn

∣∣∣∣∣ > εp

)
< 2εp (15)

So if the series is a-summable, its also b-summable.
Next we modify the terms of ξk without affecting convergence. Let sn = ±1 be any deterministic choice

of signs. Because the ξn are symmetric, the random variables ξ ′n = snξn have the same joint distribution
as ξn, and therefore ∑n snξn has the same probability of converging. If both series converge, then so do
1
2 ∑n(ξn + ξ ′n) and 1

2 ∑n(ξn − ξ ′n). Conversely, if adjusted series converge, then so does ∑n ξn. However,
ξn + ξ ′n = 0 for all n where sn =. By these considerations, we can “zero out” an infinite number of terms
without affecting convergence. More precisely, given I ⊂N, if ∑n∈I ξn and ∑n∈Ic ξn converge, then so does
the original series.

Recursively define a sequence of indices p1 = 1 and pj+1 = qpj , and suppose that ξk = 0 for pj < k ≤
qpj = pj+1. Then for this series, ∑n bpjnξn = ∑

pj+1
n=1 ξn. In other words, the b-sum for pj is just the same as the

partial sum ∑
pj
n=1 ξn. So let I be the union of an infinite collection of the intervals {pj + 1, . . . , pj+1} and let Ic

be the same.
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From what we’ve previously shown, we know ηj = ∑
pj
n=1 ξn is a sequence which converges a.s.. Now we

use 1.4 to extend over convergence for all partial sums. Since the ηj converge almost surely, they converge in
probability, so given ε > 0 its possible to find an index j(ε) such that for k > j

P(|ηk − ηj| > ε) = P

∣∣∣∣∣∣ ∑
pj<n≤pk

∣∣∣∣∣∣ > ε

 < ε (16)

By theorem 1.4, this means

P

 sup
pj<l≤pk

∣∣∣∣∣∣ ∑
pj<n≤l

ξk

∣∣∣∣∣∣ > ε

 < 2ε (17)

Given ε, let j0 = j and for ν = 1, 2, . . . , choose jν = j(ε2−ν) and kν = jν+1. Summing over inequalities like
the above, we get

P

sup
pj<l

∣∣∣∣∣∣ ∑
pj<n≤l

ξn

∣∣∣∣∣∣ > ε

 < 2ε
∞

∑
ν=0

2−ν = 4ε (18)

Since we can make this probability as small as desired, this shows that the partial sums converge.

1.8 Corollary. Let be ξn symmetric and independent. If ξ1 + · · ·+ ξn converges in probability, it converges almost
surely.

Proof. If a series converges in probability, there is a subsequence which converges almost surely. But then
the reasoning in the previous proof shows that the series converges almost surely.

1.3 Rademacher functions

Rademacher functions R = ∑k εkuk have a particularly simple convergence properties. By 1.6, they converge
if and only if ER2 = ∑k u2 < ∞.

1.9 Lemma (Large deviations). Let Sn = ∑k εkuk and S = ∑k εkuk. If P(|S| > r) < λ, then P(|S| > 2r) < 4λ2.
Let M = supn|Sn|. If P(M < r) < λ then P(M < 2r) < 2λ2

Proof. Let τ = inf{n : |Sn| > r}. Let Cn = {|S− Sn| > r}. If |Sn−1| < r and |S| > 2r, then |S− Sn| > r.
Furthermore, the event {|S− Sn| > r} is independent of the event {τ = n}. This is because ε1, . . . , εn is
independent of εnεn+1, εnεn+2, εnεn+3, . . . and |S− Sn| depends only on these values. Therefore

P{|S| > 2r and τ = n} ≤ P{|S− Sn| > r and τ = n} = P{|S− Sn| > r}P{τ = n}

Summing over n gives

P{|S| > 2r} < ∑
n

P(τ = n)P(|S− Sn| > r) ≤ P{τ < ∞} sup
n

P{|S− Sn| > r}.

By proposition 1.4, P{τ < ∞} = P(M > r) ≤ 2λ. Since the terms ε1u1, . . . , ξnun are symmetric, an argument
similar to 1.4 shows P(|S− Sn| > r) ≤ 2P(|S| > r) = 2λ. Therefore P{|S| > 2r} < 4λ2.

The argument for M is similar. Let Dn = {supm≥n|Sm − Sn| > r} which is independent of the event
τ = n. Since M > 2r and τ = n implies Dn > r, P{M > 2r} ≤ P{τ = n}PDn. Summing over n gives
P{M > 2r} ≤ P{M > r} supn P Dn. Now again by symmetry, PDm ≤ 2P{M > r}, so P{M > 2r} <
2λ2.

1.10 Proposition. The Rademacher series R = ∑k εkuk converges a.s.. iff ξ ∈ Lp(Ω) for any p ∈ [1, ∞). Moreover,
exp(αR) ∈ L1(Ω) for suitable α > 0.
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Proof. Let φ be a positive monotonic function. Let p(t) = P(|R| > t). Then Eφ(|R|) = −
∫ ∞

0 φ(t) dp(t).
Suppose p(r) < λ. Therefore, divide [0, ∞) into the disjoint segments I0 = [0, r) and Ik = [2kr, 2k+1r), and
calculate, using

Eφ(|R|) = −∑
k

∫
Ik

φ(|R|) dp(t) ≤∑
k

φ(2k+1r)p(2kr) ≤ 1
4 ∑

k
φ(2k+1r)(2λ)2k

So from this point its just a matter of testing various φ for suitable choices of λ and r. In particular,
φ(x) = eαx, if γ = 2αr + log(2λ) < 0 then Eeα|R| < ∑k e2kγ < ∞.

For φ(x) = |x|p, one can do a similar calculation, or note that E|R|p ≤ 1+ E|R|p ∨ 1 ≤ 1+ E|R|k ∨ 1 where
k = dpe. Marjorizing |R|k by the term in the taylor expansion of eα|R| gives E|R|k ∨ 1 ≤ k! α−kE exp(αR ∨ 1) <
∞ since E exp(αR ∨ 1) ≤ ea + E exp(αR) < ∞

By considering R as the sum of a finite bounded function ∑k≤n εkuk and the tail ∑k>n εkuk its possible to
show eλR ∈ L1(Ω) for any α > 0. More strongly, its possible to show eλ2R2 ∈ L1(Ω). This property is shared
by Gaussian random variables, so random variables with this property are called sub-Gaussian. Even more
can be said about the Lp(Ω) properties of R.

1.11 Proposition (Khinchine’s Inequality). Let ξ = ∑k εkuk be a Rademacher series. Then ‖ξ‖Lp ≤ cpq‖ξ‖Lq

where the constant cpq depends only on p and q and not on ξ.

Proof. Hōlder’s inequality gives ‖ξ‖L1 ≤ ‖ξ‖Lq‖1‖Lr = ‖ξ‖Lq where 1
q + 1

r = 1, so it suffices to show the
case when p > 1 and q = 1. Scaling ξ by a constant if necessary, assume ‖ξ‖L1 = 1.

Let j ≥ 1 be the unique integer 2j−1 < p ≤ 2j. By Markov’s inequality, rP{|ξ| > r} ≤ E|ξ| = 1, so

E|ξ|p =
∫ ∞

0
ptp−1P{|ξ| > t} dt ≤ 2jp

∫ ∞

0
prp−1P{|ξ| > 2jr} dr

≤ 2jp42p−1
∫ ∞

0
prp−1(P{|ξ| > r})2j

dr

≤ (2p)p42p−1
∫ ∞

0
prp−1(P{|ξ| > r})p

≤ (2p)p42p−1 p
∫ ∞

0
P{|ξ| > r} = (2p)p42p−1 p

Much work has been done to determine the optimal constant Cp,q. For p ≤ q the best possible is Cp,q = 1,
the argument above is far from optimal for other values. See [4] for a full accounting.

1.4 Contraction

Generally, its difficult to put precise conditions on when a Rademacher series converges almost surely or is
almost surely bounded. Paley and Zygmund were only able to show that ∑k u2

k(log n)1+ε < ∞ is a sufficient
condition, though this has been refined over time.

Instead, of explicit criterion, its often possible to proceed by comparison. The following shows that
shrinking the Rademacher coefficients only improves the convergence behavior of the function.

1.12 Proposition (Contraction). Let λn be a bounded sequence of complex numbers. Let R = ∑k εkun and
R′ = ∑k λkεkuk. If R converges a.s. so does R′. If R is bounded then so is R′. If R ∈ Lp(Ω) then R′ ∈ Lp(Ω)

Proof. First, let’s assume λn is real and λn ∈ [0, 1]. To begin with by applying the theorem with the multipliers
Re λn and Im λn extends it to the complex case, and applying the theorem to λn/ sup|λn| to the case when
sup|λn| > 1.

Suppose λn ∈ {0, 1}. Then ∑k λkεkuk =
1
2 (∑k εkuk + (2λn − 1)εkuk) and, by the symmetry of εk each of

the terms in the parenthesis have the same distribution. Thus the convergence of R implies the convergence
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of R′. Let M′ = supn|∑
n
k=1 λkεkuk| be the maximum of the partial sums of R′. By 1.10 we know M ∈ Lp(Ω),

so this equation implies EM′ ≤ EM, and therefore M < ∞ a.s..
For general λk, expand each in binary to get λk = ∑n≥1 2−kλnk where λnk ∈ {0, 1} and note R′ =

∑n 2−k ∑k λnkεkuk.
This approach of representing R′ as an average of series with the same distribution as R also shows that

R′ ∈ Lp(Ω) whenever R is, because ‖∑k αkξ‖p ≤ ∑k αk‖ξp‖.

1.13 Proposition. Let R = ∑k εkuk be the Rademacher series and S = ∑k einωn uk be the Steinhaus series. The series
S converges a.s. iff R converges a.s.. The series S is bounded a.s. iff R is bounded.

Proof. Let T = ∑k εkeiωk uk. If R converges, then by the conditioning principle, for each value of ωn, we can
apply proposition 1.12 with λn = eiωn . This shows that T converges almost surely. But T and S have the
same distribution since S is symmetric. If one converges then the other one does to. The converse applies
this argument in reverse with λn = e−iωn . The argument for when S or R is bounded is the same.

2 Paley-Zygmund Theorem

Here we collect a few more basic results on Fourier series.

2.1 Lemma. If ∑n a2
n = ∞ then ∑n a2

n cos2(nt + φn) = ∞ almost everywhere

Proof. If the conclusion is false, then ∑n a2
n cos2(nt + φn) < b on some set E with |E| > 0. Therefore∫

E ∑n a2
n cos2(nt + φn) < b|E|. On the other hand

∫
E cos2(nt + φn) → 1

2 |E| by the Reimann-Lesbegue
theorem. Therefore for n large enough, say n > n0,

∫
E cos2(nt + φn) >

1
3 |E|. But then we have ∑k≥n0

a2
n ≤

1
3 b|E| contrary to assumption.

This is a basic result on the convergence of Fourier series, for a proof see [5] theorem 2.10.

2.2 Theorem. Let f ∈ L1(T) and let S = ∑n f̂ (n)einx be its Fourier series. For almost every point x ∈ T, the series
S is Césaro-summable and Poisson-summable and the sum is f (x).

Next is our first interesting result on random Fourier series. It immediately gives a non-constructive
example of a Fourier series which does not represent a L1(T) function. Almost all choices for f̂ (n) = ±1/

√
n

will due, though any particular choice may not.

2.3 Proposition. Let f (t) = ∑k εkak cos(nt + φk). If ∑k a2
k = ∞ then almost surely f (t) does not represent the

Fourier series any function in L1.

Proof. By lemma 2.1, E f (t)2 = ∑k a2
k cos2(nt + φk)∞ for almost all t. Thus by theorem 1.6, f (t) diverges

almost surely, almost everywhere. In particular, by 1.7, f (t) is not Poisson-summable almost surely almost
everywhere. Therefore, f (t) does not represent the Fourier transform of any measure.

As p increases, Lp(T) gets smaller. However, convergent random Fourier series are in all Lp(T) for all
p ∈ [1, ∞). So long as (ak) ∈ `2, the Rademacher series in the following proposition gives a non-constructive
proof of a Fourier series which converges to a function in ∩pLp(T) a.s..

2.4 Proposition. Let f (t) = ∑k εkak cos(nt + φk). If s = ∑k a2
k < ∞ then

∫ 2π
0 eλ f (t)2

< ∞ a.s.. Consequently,
f (t) ∈ Lp(T) for p ∈ [1, ∞)

Proof. Let bk(t) = ak cos(nt + φk) so f (t) is a Rademacher series with terms bk(t). Note

Eeα f (t) = E exp

(
α ∑

k
bk(t)εk

)
= ∏

k
E exp(αbk(t)εk) = ∏

k
cosh(αbk(t)) (19)
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Now cosh(αx) ≤ eα2x2/2 (this can be verified by looking at the Taylor series expansions of each). Therefore,
putting

Eeα f (t) ≤∏
k

eα2bk(t)2/2 ≤ eα2s/2 (20)

This is enough to show that eα f (t) ∈ L1(T), but we will now strengthen the inequality.
Let mk = E f (t)k. Now mk = 0 for k odd, by symmetry, and mk is dominated by the corresponding term

in the Taylor series for k even

m2k ≤
(2k)!

αk Eeα f (t) ≤ (2k)!
αk eα2s/2 (21)

we minimize this term by choosing α2 = 2k/r to find m2k ≤ Ck!(2r)n. Therefore for λ < 1/(2r)

Eeλ f (t)2
= ∑

k

λn

n!
m2n ≤ C ∑

k
(2λr)n = b < ∞ (22)

In fact for arbitrary λ > 0, we could instead make this argument starting with f̃ (t) = ∑k≥n0
bk(t)εk where n0

is chosen so that 2λ ∑k≥n0
a2

k < 1. This would result in the conclusion that Eeα f̃ 2(t) is almost surely bounded.
Then since f (t) = f̃ (t) + ∑k<n0

bk(t)εk and the latter terms are bounded, the property holds for f as well.

Therefore Eeλ f 2(t) ≤ b < ∞ almost everywhere so
∫ 2π

0 Eeλ f 2(t) ≤ 2πb < ∞. In particular, since eλ f 2(t) is
positive, this means that eλ f 2(t) < ∞ everywhere.

We come now to the main result. Note that the fact that the statement that S(t) ∈ Lp(T) a.s. does not
necessarily imply that S(t) ∈ Lp(Ω). While ‖S(t)‖p < ∞ a.s., it may be that E‖S(t)‖p = ∞.

2.5 Theorem (Paley-Zygmund). Let ξk be real valued symmetric random variables and let φn be random variables on
T. Let S(t) = ∑k ξkeiφn eint.Suppose ∑ Eξ2

k ∧ 1 < ∞. Then S(t) converges a.s., a.e. in T. Furthermore, S(t) ∈ Lp(T)
a.s., for p ∈ [1, ∞). On the other hand, if ∑ ξ2

k ∧ 1 = ∞ then a.s. S(t) is not the Fourier series of any function in
L1(T).

Proof. These equivalences follow from conditioning and contraction. First assume that φn = 0 and write
ξ = εkηk where ηk ≥ 0 and εk, ηk are independent. For fixed values of ηk, the stated properties hold a.s. by
1.6, 2.4, 2.3. For example, to apply 2.4 we must know that ∑k η2

k < ∞, but guaranteed by 1.6. For the case
when φn 6= 0, condition on the values of φn and use 1.12.

For comparison, I state a related result without proof

2.6 Theorem (Billard). Let S(t) = ∑k ξkeiφn eint. Then the following have the same probability (0 or 1): (a)
S(t) ∈ L∞(T), (b) S(t) ∈ C, (c) S(t) converges uniformly.

Extensions and Discussion

The main theorems of this essay explore the relationships of various modes of convergence for random
Fourier series. In the case of a.s. convergence, the qualitative results were paired with a quantitative criterion
(namely, ∑k Eξ2

k ∧ 1 < ∞). This was not the case for a.s. uniform convergence. The various sufficient
conditions were given in [1] and [2], and a precise necessary and sufficient condition was found in [6].

The case of non-symmetric random variables is taken up by various authors. In [7], Cuzick explores
the case of scaled independent identical random variables ξk = ηkuk where the ηk are iid. Convergence
conditions are related to the asymptotic behavior of ak and the tail distribution of Xk. In [8], Talagrand
considers ξk = ηkuk where the ηk are iid with mean zero to find a fairly simple condition for a.s. uniform
convergence. Finally, in [9]Cohen shows that a.s. uniform convergence is not equivalent to a.s. boundedness.

I’d like to thank Steven Evans for some discussions while I was preparing this essay.
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