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Overview

As the exponential growth of the COVID-19 pandemic appears to slowing in the United States,
one may cautiously start to speculate about the next phase of managing the disease. As shelter-in-
place restrictions are gradually loosened, how can new eruptions of infection be prevented? One
technique proposed to mitigate the reemergence of the epidemic is contact tracing, where infected
people are isolated, and the contacts of those infected people are screened for illness. It may not
be possible to identify all contacts, or it may be that testing of contacts results in false negatives.
Under what circumstances will imperfect contact tracing allow the disease to gain a new foothold?

In this note I propose a simple model for contact tracing which allows us to analyze the
conditions on reproduction number and testing effectiveness which preclude new infections from
becoming a new epidemic.

The Hawkes Process

Let’s say a sick individual infects new people according to a Poisson process with a time-
dependent intensity. We call this intensity the infectivity, which is described by f ∈ L1(R+) with
f ≥ 0. For example, the infectivity of a newly infected individual may start low, rising to a higher
level as the viral load increases and with the onset of coughing, finally decreasing to zero as the
individual recovers or succumbs to the disease. It will be convenient to set f(t) = 0 for t < 0,
corresponding to the common-sense notion that you can’t infect someone before you yourself
became infected. Let K be the number of people infected by an individual. While K is stochastic,
and the times τ1, . . . , τK of new infection are stochastic, the infectivity f is taken to be deterministic
and is assumed to be the same for all individuals. A key parameter is R0, the expected number of
individuals infected, which is given by

R0 = E(K) =

∫ ∞
0

f(t) dt

The epidemic may be modeled as a time-dependent branching process (a recursive cluster
process) where the realization of new infections at times τi spawn a new Poisson processes with
intensities given by f(t−τi). Its common to think of a branching process in terms of offspring, and to
use language like “parent” and “child” when referring to branching events. A slight generalization
of the model includes infected “immigrants” which migrate from outside the population at a rate µ.
Note that in contrast with the SIR model, the infectivity of an individual is not a function of the
how many people are currently infected. In this sense, the branching process corresponds to an
infinite population with perfect mixing.

An alternate perspective is to consider the total number of infected individuals N(t) as a
function of time, so that dN(t) is a point process whose events correspond to the new infections.
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Contact Tracing

In [2], the branching process described above is shown to be equivalent to a point process with
conditional intensity

λ(t) = µ+

∫ t

−∞
f(t− u) dN(u)

The conditional intensity controls the distribution of events in a small interval (t, t+ dt)

P(dN(t) = 1 |N(s), s < t) = λ(t) dt+ o(dt)

P(dN(t) > 1 |N(s), s < t) = o(dt)

By introducing multiple types of events which mutually spawn each other, we may generalize
this model further. Let the cumulative count of type i be given by Ni and let its conditional intensity
be given by

λi(t) = µi +
∑
j

∫ t

−∞
fij(t− u) dNj

From the perspective of a branching process, each event of type j independently generates child
events of type i according to a Poisson process with intensity fij , and migrants of type i arrive at a
rate µi. The use of a multi-type Hawkes process as a model for epidemics is suggested in the the
first paper on the subject [1].

Here is the main result on the stability of Hawkes processes. First we need a definition. A
non-negative matrix is irreducible if Mn eventually has all positive entries. This will correspond to
a multitype Hawkes process where each type is influenced by every other type, perhaps indirectly.

1. Theorem LetM = (
∫∞
0
fij(u) du)ij be the matrix of the mean number of offspring of each type,

and assumeM is irreducible. Let ρ be the spectral radius ofM . If ρ < 1 then almost surely (dNi)

converges to a stationary distribution with E[λi] < ∞. If ρ > 1 then E[λi] → ∞ exponentially as
t→∞.

Informally, in the subcritical case ρ < 1, the number of newly infected individuals in a fixed
interval of time does not increase to infinity, whereas in the supercritical case ρ > 1 it does. We
ignore the knife-edge critical case ρ = 1. A heuristic reason for why this is plausible may be seen by
ignoring the timing of new infections and instead grouping them by the number of ancestors. If v
is a vector representing the number of individuals of each type at time 0, then Mv is the expected
number of directly infected by these individuals, and Mnv is the expected number of individuals in
the nth generation of infections. The limiting behavior of Mn is controlled by ρ.

Contact Tracing

Let’s say there are two types of individuals: type 1 are monitored and type 2 are unmonitored.
The unmonitored individuals have infectivity given by f(t) with R0 =

∫∞
0
f(t) dt representing

the average number of people infected. Monitored individuals are isolated, and have reduced
infectivity given by κf(t) for some κ < 1. Let S0 =

∫∞
0
κf(t) dt = κR0 be the average number of

people infected by these isolated, monitored individuals.
Owing to monitoring, any individual infected by a monitored individual is detected with proba-

bility α and is also monitored. However, with probability 1− α the new infection is undetected and
therefore not monitored. This could be because of a false negative on a test, or because of a failure
to identify every contact. Consider now the unmonitored population. Assume an individual infected
by an unmonitored individual remains a part of the undetected population with probability β. With
probability 1 − β, the individual is detected and isolated. In this model an individual is either
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monitored or unmonitored for his entire life. In reality, we might imagine a individual exhibits
symptoms partway through the course of their disease, and switches categories from unmonitored
to monitored at that point. This is a possible avenue for model refinement at a later time.

In light of theorem 1, consider the mean offspring matrix

M = R0

(
κα 1− β

κ(1− α) β

)
The maximum eigenvalue is given by

ρ =
1

2
R0(κα+ β) +

1

2
R0

√
(κα+ β)2 + 4κ(1− α− β)

We solve he problem of determining when contact tracing is effective by finding the values of
κ, α, β,R0 where ρ < 1. For example, take R0 = 2, but say under isolation this reduces to κR0 = 0.5

(so κ = 0.25). Assume the contact tracing detection failure rate is 10% among monitored individuals
(so α = 0.9), and that the unmonitored infection detection rate is 60% (so β = 0.4). In this case we
find ρ ≈ 0.93 and we conclude contact tracing will work under these circumstances. However if the
infected contact detection failure rate is slightly higher, say 25%, or the unmonitored detection
rate is slightly lower, say 50%, then contact tracing doesn’t work because ρ > 1.

Let’s find some easy bounds on ρ. Because M has positive entries, ρ is greater than any diagonal
element of M . Furthermore, ρ is at least as big as the smallest column-sum which, in our case, is
κR0. Thus we must have βR0 < 1 and κR0 < 1 in the subcritical case. The first condition can be
seen intuitively by focusing on the unmonitored infections only, and ignoring monitored infections
(and any subsequent infections from those infections). This process on its own must not explode.
The second condition is also intuitive, since if the reproduction number of both monitored and
unmonitored individuals exceeds 1, there’s no way for the infection to die out.

The eigenvalues satisfy the characteristic equation of M , so we may set λ = 1 in the character-
istic equation to get an implicit expression for the boundary curve of the subcritical region.

1− (ακ+ β)R0 + κ(α+ β − 1)R2
0 = 0 ⇒ 1−R0S0 = S0(1−R0)α+R0(1− S0)β

The last symmetrical expression is in terms of S0 = κR0, the expected number of infections of a
monitored individual.

From this we see that, given R0 and κ, the subcritical region for the variables α and β has a
linear boundary, in addition to the boundaries 0 ≤ α, β ≤ 1. This boundary line passes through
α = 1, β = 1/R0 and its slope ranges between 0 and ∞ as κ ranges between 0 and 1/R0. In the
case considered above, where R0 = 2 and S0 = 0.5, the subcritical region is the given by β < α/2.

For fixed α and β, the boundary of the subcritical region is a hyperbola passing through
S0 = 0, R0 = 1/β and S0 = 1, R0 = 1. The region is also bound by R0 ≥ S0 and 0 ≤ S0 ≤ 1. The
convexity of the boundary is controlled by whether α+ β is greater than or less than 1.

Conclusions

This analysis shows that in order for contact tracing to work, some simple constraints must be
satisfied. We must be able to detect many of the people infected by unmonitored individuals. To
prevent an epidemic, on average fewer than 1 individual infected by an unmonitored individual
can remain unmonitored. Further, isolation must reduce the reproduction number of a monitored
individual to be less than 1. However, if new cases are detected at a high enough rate, and if
isolation results in a low enough rate of new infections, then an epidemic will not result regardless
of the effectiveness of contact tracing. In intermediate cases where the reproduction number
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Figure 1: Fixed R0 and κ

Figure 2: Fixed α and β

under isolation is higher or the unmonitored infection detection rate is lower, then contact tracing
becomes important.
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